Learning Rich Representations from Low-Level Sensors

  • About Us
  • Gifts
  • AITopics
  • AI Magazine
  • Conferences
  • Library
  • Membership
  • Publications
  • Symposia
  • Contact

Learning Rich Representations from Low-Level Sensors

Papers from the 2013 AAAI Workshop

Marc Pickett, Benjamin Kuipers, Yann LeCun, Clayton Morrison, Workshop Cochairs

Technical Report WS-13-12
56 pp., $25.00
ISBN 978-1-57735-623-3
[Add to Cart] [View Cart]

A human-level artificially intelligent agent must be able to represent and reason about the world, at some level, in terms of high-level concepts such as entities and relations. The problem of acquiring these rich high-level representations, known as the "knowledge acquisition bottleneck," has long been an obstacle for achieving human-level AI. A popular approach to this problem is to handcraft these high-level representations, but this has had limited success. An alternate approach is for rich representations to be learned autonomously from low-level sensor data. Potentially, the latter approach may yield more robust representations, and should rely less on human knowledge-engineering.

AAAI Press

Ordering Information

Conference Reports

EAAI Symposium Reports

Fall Symposium Reports

Spring Symposium Reports

Workshop Reports

Press Books

Press Proceedings

Journals

For Authors

Permissions Requests

Other Links

AAAI Home Page

Awards

Calendar

Jobs

Meetings

AAAI Press

Resources

AAAI Workshops

Follow @RealAAAI

This site is protected by copyright and trademark laws under US and International law. All rights reserved. Copyright © 1995–2020 Association for the Advancement of Artificial Intelligence.
Your use of this site is subject to our Terms and Conditions and Privacy Policy | Home | About AAAI | Search | Contact AAAI
AAAI Conferences | AI Magazine | AITopics | Awards | Calendar | Digital Library | Jobs | Meetings | Membership | Press | Press Room | Publications | Resources | Symposia | Workshops