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Abstract

We propose a new integrated architecture for dis-
tributed planning and scheduling that exploits
constraints for problem decomposition and co-
ordination. Our goal is to develop an efficient
method to solve densely constrained planning
/ scheduling problems in a distributed manner
without sacrificing solution quality. We im-
plemented a prototype system, called CAMPS,
in which hierarchy of intelligent agents try to
coordinate their actions for "satisficing" plan-
ning / scheduling results by handling several
intra- and inter-agent constraints. In this pa-
per, we show the repair-based methodology
for distributed planning / scheduling and the
constraint-based mechanism for dynamic coali-
tion formation among agents.

Introduction
In the research of distributed artificial intelligence
(DAI), there has been research on cooperative dis-
tributed problem solving (CDPS) (Decker, Durfee, 
Lesser 1989) or coordinated problem solving (Gasser
& Hill 1990). In those systems, a loosely coupled dis-
tributed network of semi-autonomous agents, each of
which is capable of sophisticated problem solving, co-
operatively interact with other agents to solve a prob-
lem with a single goal (Lesser & Corkill 1987).

The planning and scheduling activities in a manufac-
turing enterprise can be naturally modeled as CDPS.
The goal of planning / scheduling is, in its broadest
sense, to maximize profit of the enterprise. And in
the planning / scheduling problem, each agent, who
is in charge of different aspects of the problem, works
cooperatively to attain the common goal of making a
globally most profitable plan / schedule, and at the
same time it acts distributedly to solve its own lo-
cal sub-problem trying to maximize its own objectives.
The most important distinction of the enterprise plan-
ning / scheduling problem from the other cooperative
distributed problems studied so far is its constrained-
ness. In the planning / scheduling problem, any single
decision of each agent can cause unpredictable ripple
effects on other agents’ decisions through constraint

propagation. Therefore, constraints should be properly
handled for efficient solving of distributed planning /
scheduling problems.

There have been a couple of related research activ-
ities in the fields of constraint satisfaction problem
(CSP) and constraint-based scheduling. Among the-
oretical research of distributed constraint satisfaction
(Hirayama & Toyoda 1995; Yokoo et al. 1992), al-
most none has developed the effective method for solv-
ing densely constrained problems such as production
scheduling problems. And in the study of distributed
scheduling, the aim of the systems has been to find a
feasible solution (CORTES (Syeara et al. 1991)) or 
satisfactory solution in terms of a simple objective (e.g.
time-shift preferences in DIS-DSS (Neiman, Hildum, 
Lesser 1994)). In those systems, a solution is built con-
structively by scheduling agents which communicate
abstract resource profiles and meta-level information
(such as lending possibility) among them. The agent
interaction is hard-coded a priori in the systems and
can’t be adjusted during the course of problem solv-
ing. But, in multiagent problem solving, the degree
and type of desirable agents’ interaction must differ
among problem instances depending on the problem
characteristics (such as its goal, constraints). And 
is inherently difficult to find an optimal collaboration
in distributed problem solving because of the follow-
ing reasons: (1) several individual agents are in charge
of the diverse aspects of the problem in an isolated or
inter-dependent manner, (2) each agent should have
its own local view of the profit, which is not necessar-
ily consistent with the other agents’ or global profit,
and (3) each agent cannot have complete knowledge
about the other agents because of resource limitation
and privacy.

In our new architecture for distributed planning and
scheduling, agents iteratively repair its local solution
to pursue a globally "satisficing" result. In Anchor
Ascend approach by Liu (Liu 1996), the specific prob-
lem structure such as bottleneck resources is used to
control iterative repair by several agents while keep-
ing search space of the agents tractable. But this ap-
proach is effective only when the appropriate problem
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structure exists for target objectives (e.g. bottleneck
resources for tardiness minimization). To meet more
realistic conditions seen in everyday life of the facto-
ries, we need more flexible mechanism to define and
refine the search space of agents in an effective and
efficient manner. Thus we decide to have agents co-
ordinate a way of decomposing a problem and resolv-
ing conflicts among themselves. Repair methods are
decided coUaboratively by negotiation among agents
considering trade-offs of their preferences and global
objectives. To improve quality and efficiency of the
distributed repair process, the system needs to have
sophisticated control over agents’ negotiation process.
Since the repair process by agents is strongly problem-
dependent and the planning / scheduling problem is
ill-structured by nature, it is difficult to develop a gen-
eral procedure for agents negotiation in the distributed
planning / scheduling problem. To solve the above
difficulty, our system exploits constraints for two pur-
poses in the distributed problem solving: (1) the prob-
lem is decomposed into a set of sub-problems based on
its constraints and the sub-problems are distributed
and assigned to the appropriate agents, and (2) intra-
or inter-agent constraints are dynamically enforced or
relaxed by the agents to control negotiation process
considering the trade-off between concurrency and co-
ordination in multiagent problem solving.

Overview of The Problem
Our problem is formulated as a job shop planning
/ scheduling problem, which is a well-known NP-
complete problem (French 1982). In the problem, each
job consists of a set of operations with fixed duration
to be scheduled according to a partial operation order-
ing. The dominant constraints in the problem are two-
holds: (1) the operation precedence constraints along
with a job’s release date and due date restrict the set of
acceptable start times for each operation, and (2) the
capacity constraints restrict the number of operations
that can use a resource at any particular point in time
and create conflicts among operations that are com-
peting for the use of the same resource at overlapping
time intervals.

The goal of a planning / scheduling system is to
set up plans that are feasible and direct to global op-
timality such as minimizing lead time and weighted
tardiness, and to produce schedules that respect the
given plan and other constraints, and also optimize a
set of local objectives, such as minimize work in pro-
cess inventory (WIP) (i.e. the time operations spend 
a factory waiting to be processed), maximize resource
utilization etc. To be noted is that global and local
objectives may not necessarily be compatible so that
the goal of the system is not to find an optimal but a
satisficing result.

A Model of Distributed Planning /
Scheduling

Figure 1: Agents Model

We model a planning / scheduling problem as a multia-
gent distributed problem, where we have three types of
hierarchical agents in charge of different aspects of the
planning / scheduling problem and those agents work
cooperatively and asynchronously to achieve their goal
(see Figure 1):

¯ A manager agent decomposes orders from clients
into a set of jobs and distributes them to planner
agents. Considering both clients’ request and plan-
ners’ capability, it sets a time-window for each job.
A manager, agent is thus in charge of load-balancing
among planner agents.

¯ A planner agent distributes operations that con-
sist of its assigned jobs to scheduler agents. Then,
a planner agent integrates, evaluates and improves
the solutions from the scheduling agents. A plan-
ner agent is responsible for constructing a solution
which satisfies global constraints given by the man-
ager agent.

¯ A scheduler agent administrates a single resource
and sequences its assigned operations. A scheduler
agent seeks for its local schedule respecting a plan-
ner’s requirements as well as optimizing its own local
objectives.

Decisions by one agent to achieve its tasks pro-
duce unpredictable effects on decisions of other agents
through constraint propagation. The influence is not
always exerted in top-down fashion, but agents in
higher hierarchy are often required to modify their de-
cisions to accommodate the feasibility of lower agents.
Therefore, problem solving process is inherently itera-
rive, and for fast problem solving, interactions among
agents need to be controlled properly.

CAMPS Problem Solving Process
We propose the system called CAMPS (Constraint-
based Architecture for Multiagent Planning / Schedul-
ing), which is a distributed architecture for solving the
planning / scheduling problem with constraint-based
search.
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Figure 2: CAMPS Process Flow

Figure 2 depicts the schematic flow of agent inter-
actions in CAMPS. Agents of upper level decompose
a problem into sub-problems and assign them to the
agents of lower level with the constraints to be re-
spected. The assigned agents try to solve the given
sub-problem and report the result back to the upper
agents. When the result is failure or unsatisfactory, the
upper agents try to modify the problem decomposition
or the constraints. Therefore, in most of the cases, the
same level of agents (planners, schedulers) can work
independently and concurrently.

A manager agent takes orders from clients and de-
composes the orders into jobs which are processed by
a single planner agent. With each job, it makes deci-
sions on a release date, the date that it will be ready
for starting processing, and a due date, a date on which
the job should finish, based upon several management
data such as the client’s requirements, current level of
resource utilization, past records of jobs’ lead time and
so on. Then, the manager agent assign jobs to appro-
priate planner agents so that the planner agents can
finish the jobs in the determined time-windows.

Given the jobs from the manager agent, each planner
agent decomposes its assigned jobs into operations and
assigns every operation to appropriate scheduler agents
which can process the operations using the resource
they supervise. Or, a planner agent assigns some part
of its jobs to other planner agents as subcontractors im-
posing constraints to be satisfied. When assigning the
operations to the scheduler agents, the planner agent
adds constraints on each operation, which represent
desirability of the time-interval over which the opera-
tions are scheduled, based on the estimated resource

Scheduling Agent-1

Scheduling Agent-2

Figure 3: Inconsistency among Local Schedules

load and operation precedences. These constraints are
decided through negotiation between agents consider-
ing both global objectives and local preferences. If mu-
tual agreements on the constraints are not established,
decomposition is revised based upon the contents of
disagreement.

There have been several research activities which
analyze global resource capacity and operation con-
straints for estimating contentions on each resource
(Sadeh 1991; Berry 1991; Muscettola 1993). Most 
them have been done under a single scheduling agent
scenario with a few exceptions such as (Sycara et al.
1991; Neiman, Hildum, & Lesser 1994). Agents in
CAMPS are more flexible than those systems since
CAMPS can dynamically modify its constraints on its
interacting agents in discourse with them.

After receiving time-interval constraints (desirabil-
ity), each scheduler agent, which is in charge of a single
resource, determines which reservation to assign to the
operations so that they don’t overlap each other over
the time intervals. In fixing the reservation for oper-
ations, a scheduling agent can exploit the constraints
and a set of heuristics. For example, a greedy heuristic
selects a reservation based on local preferences associ-
ated with each operation. A least constraining heuris-
tic selects the reservation that is the least likely to
prevent other operations (of other agents) from be-
ing scheduled. Thus, the time-interval constraints help
scheduler agents make sequencing decisions, which re-
spect precedence and capacity constraints of the opera-
tions, without communicating with the other scheduler
agents.

Repair-Based Planning / Scheduling

Rational load distribution to each scheduler agent by
a planner agent can help scheduler agents make reser-
vation of resources to the operations independently.
Although it can reduce possibilities of inconsisten-
cies among local schedules, they cannot be eliminated.
Lots of inconsistencies among reservations of other
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Therefore, interaction among agents is necessary to
resolve such inconsistencies. In the past research of dis-
tributed scheduling, agents interact with other agents
tightly during construction of a partial schedule to pre-
vent reservations that cause inconsistencies or to per-
form global backtracking for conflict resolution. But,
in those systems the cost of communication among
scheduling agents is immense especially when frequent
global backtracking occur. In CAMPS, we adopt a
repair-based approach, i.e. each scheduler agent con-
structs its own local schedule without dense communi-
cation among the other scheduler agents and resolves
the conflicts in agents’ schedule through negotiation
after every agent builds its own local schedule.

Our repair-based approach is motivated by the fol-
lowing considerations:

1. Quick detection of over-constrainedness
When any single scheduling agent cannot make a
feasible schedule even without considering conflicts
among other agents, the given problem is possibly
too tight and a planning agent must relax some con-
straints to make the problem solvable. This situation
can be efficiently captured if each scheduling agent
tries to make its own schedule before interacting with
other agents at the first step of building a consistent
schedule. Although clearly this is not a complete
testing to detect over-constrained problems, in some
cases this might help reducing redundant computa-
tion resulting from the poor capabilities of a plan-
ning agent which assign over-constrained problems
to scheduling agents.

2. Efficient solution finding

Once every agent makes an initial schedule to be re-
paired, agents can get the global view (or, at least
a meta-level view because of communication band-
width limitation) of overall solution structure, which
cannot be acquired correctly in the middle of con-
structive problem solving. Therefore, there is a pos-
sibility for a repair-based method to find a solution
efficiently by exploiting information of the solution
structure for focusing computational efforts on the
most constrained parts of the conflicted solution.

3. Acquisition of context-dependent preferences

In realistic planning / scheduling problems, each
agent needs to make decisions based upon context-
dependent preferences and constraints that have not
been represented explicitly in the problem solving
model. It is difficult to capture this contextual in-
formation even from a human expert without giving
him/her a specific situation as examples. But re-
pairing one’s schedule to make it compatible with
others’ and maximize its own local objectives as
much as possible through negotiation can provide
a rich set of actual problem solving situations for
each agent (either human or computer). In negoti-
ations each agent determines its actions considering

the trade-offs of local and global (other agents’) pref-
erences and revises them by getting feed-back from
other agents. Hence we hypothesize that, by storing
the course of the inter-agent negotiations, context-
dependent preferences of agents can be acquired with
reasonable cost and they can be applied to solve the
future problems.

Agent Coordination in CAMPS

Each scheduler agent’s schedule should be coordinated
and inconsistencies should be resolved through inter-
actions among agents. Agents do not pursue merely a
feasible solution, but quality of the global plan / sched-
ule can be iteratively improved through agents’ coordi-
nation. In the course of coordination, the agents make
negotiations trying to find optimal trade-offs among
their local preferences and other agents’ preferences
and make commitments based on the negotiation re-
sults.

Problem solving process in CAMPS consists of the
following four steps: (1) decomposing a problem into
mutually interrelated sub-problems and imposing some
constraints on sub-problems from a global objective
point of view, (2) solving sub-problems independently,
(3) detecting conflicts and defects by integrating local
sub-problem solutions, and (4) defining and refining
the shared search space of interacting agents to re-
move conflicts and defects. Among the above steps,
the second and third step can be executed without so-
phisticated interactions between agents. Careful co-
ordination is required at the first and fourth step: at
these steps agents must cooperatively accomplish sev-
eral tasks such as problem decomposition and conflict
resolution.
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Coordination for Repair

In CAMPS, coordination mechanism among agents
works for repairing the defects caused by the lack of
agents’ knowledge about the environment (including
other agents). Since such knowledge can’t be fully ac-
quired owing to dynamic nature of the environment
and privacy of agents, coordination through repair is
inevitable for pursuing globally consistent solutions. In
the system, we have three types of repair strategies for
resolving inconsistencies or improving quality of the
solutions:

1. Intra-Agent Constraint Adjustment
After schedule integration, when conflicts are de-
tected among each agent’s schedule, they are to
be resolved through negotiations among scheduler
agents by revising schedules locally. This pro-
cess is similar to the repair-based scheduling ap-
proach (Minton et al. 1990; Zweben et al. 1992;
Miyashita ~ Sycara 1995), but it is more compli-
cated because of distributed nature of the system,
i.e. many conflicts can/should be detected and
solved simultaneously, thus resolution processes on



Scheduling Agents

Figure 4: Interactions among Scheduler Agents Figure 5: A Planner Agent

the different sets of conflicts may interact each other
and result in divergence.
The simplest way of revising a schedule is to change
constraints of a scheduler agent. An example of this
type of repair is adding precedence constraints be-
tween operations assigned to a scheduler agent. By
adding or deleting constraints of the agent, search
space of the agent can be controlled so that a desir-
able schedule might be achieved.

2. Inter-Agent Constraint Adjustment
When a desirable schedule can’t be achieved by
intra-agent constraint adjustments, next coordina-
tion mechanism for repair is changing constraints
among scheduler agents. In an initial stage of
CAMPS problem solving, there is no (or very few, if
any) constraints among scheduler agents. It means
scheduler agents can work on their own problem in-
dependently and concurrently. If load is distributed
to agents ideally, this will produce a feasible solu-
tion most efficiently. However, ideal load distribu-
tion is seldom realized because of intractable inter-
actions among agents and operations. Therefore,
in CAMPS, coordination among scheduler agents
is necessary and implemented as inter-agent con-
straints.
An example of inter-agent constraints is a prece-
dence constraint between operations assigned to dif-
ferent agents. With inter-agent constraints, agents
need to communicate with related agents when a
constrained variable is processed in the agents (see
Figure 4). By dynamically adjusting inter-agent con-
straints, CAMPS can enforce coordination among
agents with loss of concurrency. Thus CAMPS can

.

control the granularity of distributed problem solv-
ing.

Problem Adjustment

When conflicts are decided unsolvable or cannot
be resolved in a reasonable amount of time among
scheduler agents, a planner agent starts negotia~
tion with agents to remove conflicts. In the nego-
tiation, a planner agent can relax some constraints
or change problem decomposition to give scheduler
agents more flexibility in modifying their local sched-
ule for conflict resolution. The examples of remedies
executable by a planner agents are:

¯ prolong lead time of jobs (i.e. allow tardiness)
¯ improve performance of the resource (e.g. over-

time)
¯ cancel jobs

¯ subcontract jobs to other planner agents
¯ subcontract some operations to other scheduler

agents

And even when a conflict-free schedule is generated
for entire scheduler agents, a planner agent can ask
re-schedule or repair of schedule for scheduler agents
when the planner agent cannot be satisfied with
quality of the current schedule from the global point
of view.

Implementation
Figures 5 and 6 show the snapshots of a planner agent
and scheduler agents in CAMPS. Current version of
CAMPS system is implemented using JAVA language.

140 As shown in the windows of the above figures, agents in
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Figure 6: Scheduler Agents

CAMPS communicate each other by means of message
passing. Agent’s messages are coded in KQML lan-
guage. The contents of the message are written with
domain ontologies which model the task and domain
structure of the problem. More sophisticated design of
ontologies, which can be a fundamental tool for both
problem solving and knowledge acquisition, is still a
target of future research.

Conclusions
In this paper, we propose a new architecture for dis-
tributed planning and scheduling that exploits con-
straints for problem decomposition and coordina-
tion. In the research we view distributed plan-
ning/scheduling as a negotiated search process that
iteratively builds a feasible and mutually satisfactory
schedule among agents. The feasibility and superior-
ity of our approach should be further evaluated empir-
ically. Our next plan is to extend our view of domain
model in terms of planning and scheduling problems,
and capture the preferences of individual agents and
search control knowledge for efficient and high qual-
ity problem solving by applying case-based reasoning
method, which stores the past course of negotiation
and reuses it to solve the current problems.
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