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Abstract 
Turbulence prediction is an important challenge to the 
aviation community because accurate forecasts are critical 
for the safety of the millions of people who fly every year. 
This paper details work in applying two AI techniques, 
support vector machines and logistic regression, to clear-air 
turbulence prediction. We show not only improved forecast 
accuracy over the current product performance, but also 
complete feasibility as part of a real-time operational 
turbulence forecasting system. 

Introduction 
The main challenges in predicting the weather are 
insufficient computational power and gaps in our 
understanding of the complex dynamics of atmospheric 
phenomena. There are comparatively straightforward 
solutions to these problems: enough teraflops, the right 
equations. But what happens when one has neither? This is 
the problem facing aviation turbulence forecasters, who are 
charged with predicting turbulent conditions that would 
affect aircraft, but who have neither the computational 
resources to predict it explicitly nor a complete 
understanding of how to derive it accurately from available 
meteorological data. Yet, commercial and private aviation 
communities expect accurate, timely turbulence forecasts.  
 
Turbulence forecasting is an important challenge to the 
aviation community because while severe turbulence is 
rare, predicting it correctly is critical for the safety of the 
millions of people who fly commercial and private aircraft 
every year. Although fatalities are low, 65% of all weather-
related commercial aircraft incidents can be attributed to 
turbulence encounters, and major carriers estimate that they 
receive hundreds of injury claims and pay out ``tens of 
millions" per year (Sharman et al., 2006). 
 
Turbulence exhibits structure at all scales, all of which 
trade energy with one another in complicated ways, and 
numerical methods simply cannot keep up. Clear-air 

turbulence (CAT) forecasting is particularly challenging, 
because this phenomenon is invisible to both the eye and 
radar (unlike convective turbulence in/near thunderstorms, 
for instance). Faced with simulations that are too coarse to 
truly resolve the behavior that is of interest, plus sparse, 
subjective observations of ‘light’ or ‘moderate’ turbulence 
reported by pilots (PIREPs; further description of PIREPs 
and their limitations as a data source can be found in 
Schwartz (1996) and Abernethy et al. (2006)), the 
numerical weather prediction community reasons about 
large-scale quantitative atmospheric data and qualitative 
PIREPs in order to identify regions where aircraft-scale 
eddies are likely to form. The goal is to produce an 
automated system that detects rare events but does not 
over-predict them.   
 
The current automated turbulence forecasting system, 
funded by the Federal Aviation Administration's Aviation 
Weather Research Program (FAA/AWRP) and used by the 
National Oceanic and Atmospheric Administration's 
Aviation Weather Center (NOAA/AWC), integrates 
qualitative and quantitative data using fuzzy logic to 
produce a forecast. This tool, called Graphical Turbulence 
Guidance (GTG), was developed by the National Center for 
Atmospheric Research (NCAR) and NOAA's Global 
Systems Division (NOAA/GSD).  
 
Recently, a new, better source of turbulence observations, 
termed in-situ data, has become available. In-situ data are 
sensor data from aircraft: measures of atmospheric eddy 
dissipation rate (Cornman et al., 2004). While the study of 
CAT is necessarily limited to that directly experienced by 
aircraft since it cannot be seen, in-situ data is so much more 
plentiful than PIREP observations that researchers now 
have enough data to explore additional AI techniques for 
forecasting. The specific goal of the project described in 
this paper is to intelligently exploit this new data source in 
a forecasting system using artificial intelligence techniques. 
We present two methods, support vector machines (SVM) 
and logistic regression — each combined with a wrapper 
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method for feature selection — for potential usage in the 
next version of GTG. We compare these two AI techniques 
by their improvement in forecasting accuracy over the 
current GTG. Obviously, better data should improve a 
forecast. Because of the complexity of the software, system 
and verification process, however, there are significant 
challenges involved. These challenges — of predicting 
turbulence itself, the requirements of an operational 
product, and how both of these affect the use of artificial 
intelligence techniques —are discussed throughout. 

Clear-Air Turbulence Heuristics 
Through the years when forecasts were done manually, 
forecasters developed “rules of thumb'' about what 
atmospheric conditions typically indicated turbulence. 
These rules of thumb were an attempt to link the available 
large-scale meteorological data and the micro-scale CAT 
that was the subject of the forecast (Hopkins, 1977). 
Forecasters later quantified these rules, creating CAT 
diagnostics. A CAT diagnostic is a simple turbulence 
model (equation) calculated from numerical weather 
prediction (NWP) model data. For instance, a major cause 
of CAT is the Kelvin-Helmholtz instability: when gravity 
waves become steep and unstable, they may break into a 
chaotic motion (Dutton and Panofsky, 1970). This typically 
happens in areas of strong vertical shear (the difference in 
velocity between horizontal layers) and low local 
Richardson number (Ri, the ratio of static stability and 
wind shear), so many CAT diagnostics involve shears and 
Ri. There are many different diagnostics linking a large-
scale condition to small-scale turbulence. Their predictive 
powers vary, depending upon the large-scale condition that 
each represents and how directly it is linked to turbulence. 
A full explanation of the forty CAT diagnostic equations 
can be found in Sharman et al. (2006). 
 
Forecasters use these CAT diagnostics by mapping their 
values to different turbulence severity levels. As an 
example, low Ri indicates high turbulence. Early on, 
forecasters determined some unofficial thresholds to 
quantify the severity of turbulence that corresponded to a 
given diagnostic value — “Ri < 0.25 = moderate or greater 
turbulence,'' for example (Dutton & Panofsky, 1970). In 
this way forecasters were able to transform their qualitative 
knowledge to a quantitative form that could be used in 
automated systems. GTG developers used several years’ 
worth of PIREPs to develop threshold values for each 
diagnostic, mapping them to different levels of PIREP 
turbulence severity. PIREPs range from ‘smooth’ (0) to 
‘extreme’ (7), with ‘moderate’ being intensity 3.  This 
mapping allows the diagnostics to work neatly with the 
qualitative PIREP observations.  

Semi-Quantitative Observation Data 
In-situ turbulence measurements are sensor data that are 
recorded by special software on commercial aircraft every 
minute during flight. Detailed coverage of in-situ data and 
the associated data-acquisition methods can be found in 
Cornman et al. (2004). An in-situ measurement is a 
measurement of the eddy dissipation rate (EDR) around an 
aircraft. Eddies are irregular currents of air, and the rate at 
which eddies break down is recognized as a good measure 
of atmospheric turbulence intensity (Panofsky and Dutton, 
1983).  Compared to PIREPs, in-situ data are more 
objective, more accurate, more plentiful, and more 
representative of the actual distribution of turbulence in the 
atmosphere (Dutton, 1980 and Sharman et al., 2006).   
 
Currently, in-situ measurements of EDR are being gathered 
from 197 United Airlines aircraft. Several other airlines 
will deploy the data-gathering system in the coming year. 
An example of this data is shown in Figure 1.  

 
Figure 1. An example of the geographic distribution of in-
situ data. PIREP data are included in this plot, though they 
are all but invisible under dense in-situ data along United 
flight paths. Color indicates frequency of observations. 
 
Each in-situ data report is a location triple (latitude, 
longitude, altitude) and a median and peak (95th percentile) 
EDR reading from measurements taken over the 
corresponding minute. Each of the two EDR fields is 
binned and the two binned values are combined to reduce 
transmission costs. The binning turns otherwise continuous 
quantitative observation data into a set of eight discrete 
values that are cognate to the eight PIREP intensity levels.  
Currently we consider bin 4 to correspond to a ‘moderate’ 
PIREP, although study is ongoing (Abernethy et al. 2006). 
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Methodology 
Our initial application of AI techniques to operational 
turbulence prediction consisted of testing Support Vector 
Machine (SVM) and logistic regression algorithm 
performance over our entire prediction domain, the 
continental U.S. (“CONUS”), and comparing their 
forecasting accuracies. For each algorithm, for both zero-
hour and six-hour forecasts, we used a subset selection 
search to pick a subset of CAT diagnostics which together 
had the highest forecast accuracy. We then tested the 
performance of each model in a simulated operational real-
time system using either a static model for each hour’s 
forecast or dynamic training of the model using the 
previously-chosen subset. The following subsections 
summarize our data and methods.  

AI Techniques 
There are many choices of AI techniques for this task; here, 
we chose SVMs because they are good general classifiers 
and can give probabilistic output. We chose logistic 
regression for its similarity to the current GTG algorithm in 
its use of weights, its speed of computation, and its 
probabilistic output. Future product versions will need to 
produce probabilistic forecasts. 
 
  For brevity, we refer the reader to background on the 
SVM classification technique in Hsu et al. (2003). For 
implementation of the SVM, we used the LibSVM library 
(Chang and Lin, 2003).  From previous studies (Abernethy, 
2005), we know the radial basis function kernel, with 
parameters C = 2 and γ = 8 and probabilistic output, gives 
good performance for our domain. Background on the 
technique of logistic regression can be found in Hosmer 
and Lemeshow (1989). Although logistic regression 
produces probabilities, we used its and the probabilistic 
SVM’s outputs as turbulence intensities on a scale of (0,1) 
in order to compare to deterministic (0,1) intensity 
forecasts of the current GTG product. 

Performance Metrics 
It is not trivial to assess the accuracy of a forecast because 
we do not know the ‘truth’; we must use available 
observation data, however flawed or irregular (while in-situ 
data might have less random error than do PIREPs, the data 
are still spatially and temporally irregular since they exist 
only where/when airlines fly).  We followed the 
verification practices of Takacs et al. (2005), which include 
the Receiver Operating Characteristic (ROC) curve and 
area under the curve (AUC) (Marzban 2004), and True 
Skill Score (TSS), because these are the metrics by which 
our forecasting product will be measured when deployed 
operationally.  
 

Recall from the subsection “Semi-Quantitative Observation 
Data” that both PIREPs and binned in-situ data have eight 
intensity levels and that we currently consider an in-situ bin 
4 to be most similar in intensity to a ‘moderate’ pilot report. 
Bin 4 defines the moderate or greater (MOG) threshold, 
with values below bin 4 part of the class of less than 
moderate (LTM) observations. A ROC curve measures how 
well an algorithm discriminates between two classes such 
as MOG and LTM. To construct the curve, we vary the 
threshold that separates these two intensity classes over a 
(scaled) range of 0 to 1 and measure the discrimination 
accuracy at each threshold. Two numbers are used to 
capture this: PODY, “probability of detecting a yes” 
(forecast made a correct positive (MOG) prediction), and 
PODN, which corresponds to a correct negative (LTM) 
prediction. Higher PODY/PODN combinations over the 
range of thresholds implies greater classification accuracy, 
so the AUC is a useful single-number metric for forecast 
accuracy. The TSS considers PODY and PODN at one 
threshold (such as bin 4) : TSS = PODY + PODN – 1.   

Data  
Data used in the work described here consist of weather 
model and observation data – both PIREPs and in-situ data 
– from October through March 2006/7, shown in Figure 1. 
The weather model is Rapid Update Cycle (RUC) model at 
13km resolution, run operationally and disseminated every 
hour by the National Center for Environmental Prediction. 
RUC model data was used to calculate forty CAT 
diagnostics for each RUC model grid point (see CAT 
Heuristics subsection) and observation data was matched 
by time and location to the forty diagnostics for a grid 
point. Only matches above 20000ft were used due to data 
quality issues and different mechanisms of turbulence 
below 20000ft.  
 
Over 98% of the observations were of LTM turbulence. 
The distribution of the data used during the training process 
is a very important factor in the ability of a classifier to 
discriminate between the two classes (Japkowicz, 2000). 
Classifiers aim for the lowest overall error rate; one could 
simply classify everything as LTM and have a less than 2% 
error. This is well-supported in the literature (Japkowicz 
(2000), Weiss and  Provost (2001), Wu and Chang (2005)). 
To work well, the training data set must have a large 
number of examples from each class. We found that 
rebalancing the training data such that 40% of the data were 
of MOG and 60% were LTM produced stable results: these 
proportions resulted in the best SVM classification rate in 
an earlier study of SVMs with CAT diagnostics and in-situ 
data (Abernethy, 2005).  We did this by keeping all the 
MOG observations and choosing LTM observations 
randomly to be 60% of the set. We found 20% MOG and 
80% LTM to be a good distribution for logistic regression 
training data.  
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Analysis of the data reveals that PIREPs dominate the 
MOG category (>92%) and in-situ data dominates the LTM 
category (>98%). Thus, PODY is effectively a measure of 
the algorithm’s ability to predict PIREPs and PODN 
becomes a measure of in-situ prediction capability. We 
know using only in-situ data to train the algorithm 
improves performance (Abernethy et al. 2006). However, 
our forecasting product will be verified using PIREPs (at 
least in part), thus we would be foolhardy not to use the 
same data and metrics with which the FAA will decide its 
fate.  

Subset Selection Search 
Turbulence forecasting, in its current state, is essentially the 
task of classifying atmospheric indicators of turbulence: the 
forecast reflects the number of diagnostics which indicate 
turbulence in an area. While it might seem obvious to 
simply use the individually best-performing diagnostics for 
forecasting, as was done with GTG, that approach allows 
one to possibly miss a different set of diagnostics that 
might perform better, as a group, than the set of the 
individually top-ranked diagnostics (Kohavi (1995,1997), 
Guyon and Elisseef (2003)). Our search for the best subset 
of diagnostics is essentially the task of feature subset 
selection (Guyon and Elisseef, 2003). We are faced with 
the choice between 40 diagnostics, knowing that some may 
not improve our current forecasting accuracy. In addition, it 
is infeasible to calculate and use all 40 in a real-time 
operational system. The wrapper method in feature subset 
selection executes a state space search for a good feature 
subset, estimating prediction accuracy using an induction 
algorithm – here, we used SVMs and logistic regression 
(Kohavi and Sommerfield, 1995). Using the induction 
algorithm output, we calculated TSS as the accuracy 
metric. We used a simple hillclimbing search. Each state is 
a subset of diagnostics, and the search operator is “add a 
diagnostic”. The search chooses the best addition to the 
current subset based on the classification skill (TSS) of the 
induction algorithm using the current subset plus an 
additional diagnostic. This approach to the search is called 
forward selection. Thus, we start with an empty subset and 
added diagnostics stepwise; our stopping condition was no 
further classification performance improvement.  Searches 
were performed for SVM and logistic models for both zero 
and six-hour forecasts using training, testing and holdout 
data sets from 18Z over winter 2006/7.  

Simulated Real-Time Operational System 
We have created a simulated real-time forecasting system 
capable of using either SVMs or logistic regression to 
create a turbulence forecast every hour for the CONUS. 
The system trains a model for every forecast hour or uses a 
pre-trained model so that we may test performance 
differences between dynamic and static weighting, 

respectively. For both, we use the sets of diagnostics found 
in the searches explained above. In this paper, we present  
results from trials over the fifteen-day period of 2/1/2007 to 
2/15/2007. Thus far we have concentrated on zero-hour 
forecasts in this step. We also applied our dynamically 
trained models to the entire RUC grid – since GTG uses 
dynamic weighting, also – to make a full forecast in order 
to assess geographic accuracy and get an idea of amount of 
turbulence predicted as compared to the current GTG 
forecasting system. 
 
 AUC TSS Subset size 
GTG 0hr fcsts 0.795 0.390 10 
Log search 0hr 0.801 0.478 13 
SVM search 0h 0.7825 0.471 8 
GTG 6hr fcsts 0.78 0.366 10 
Log search 6hr 0.79 0.467 6 
SVM search 6h 0.78 0.4643 12 
GTG 0-hr 15days 0.799 0.350 10 
Log static 0-hr 0.823 0.466 13 
SVM static 0-hr 0.796 0.459 8 
Log dyn. 0-hr 0.786 0.45 13 
SVM dyn. 0-hr 0.775 0.464 8 
Table 1. Area under the Curve, True Skill Score, and subset 
size results for feature selection searches and 0-hr 15-day 
real-time simulation runs. GTG skills for the same data are 
in italics. Higher TSS and AUC indicate greater skill.  

 
Figure 2. Receiver operating characteristic (ROC) curves 
comparing performance for 15-day real-time simulation of 
0-hr forecasts using static weighting. The solid line is the 
current GTG performance for the same 15-day period. 
Lines closer to top left corner indicate better forecasting 
performance. See Table 1 for areas under the curves.  
 
The LibSVM library did not come ready to handle such 
large real-world data sets. Since LibSVM uses ascii files, 
13km-resolution gridded RUC data caused each forecast to 
take over an hour. To mitigate this, we built a NetCDF file 
format interface onto the library and replaced the 
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Figure 3. Like Figure 2, for dynamically-trained models.  
 
exponential function with an approximation. Both changes 
cut the forecast time down to a more operationally 
appropriate five minutes. 

Results 
Results of our forward selection subset searches and real-
time simulations are shown in Table 1. While we do not list 
the exact diagnostics chosen by each search for the sake of 
simplicity, we did find that there was significant — though 
not complete — overlap in the diagnostics chosen by each 
search, indicating high predictive capability for a core 
subset of four or five diagnostics. Logistic regression 
shows a small improvement in AUC over the overall 
performance of the current GTG algorithm for both 0 and 
6-hr forecasts (about a 0.01 difference), however, the true-
skill scores (TSSs) for both algorithms are significantly 
improved over GTG (0.09 – 0.1 improvement).  This is 
most likely due to the fact that our search used TSS as the 
heuristic to choose the sets of diagnostics.  
 
Figures 2 and 3 show the ROC curves for our static- (model 
trained in the search step is applied to data from each hour)    
and dynamic-weighting (new model is trained every hour) 
15-day real-time simulations. It should be noted that GTG 
has been tuned using years of PIREPs, thus its PODY 
scores are highest (since PIREPs dominate the PODY 
category). Logistic regression using pre-determined (static) 
weights improves significantly upon the current GTG 
product, increasing the AUC from 0.799 to 0.823 and the 
TSS from 0.35 to 0.466. While the static-weighting SVM 
and both dynamically-weighted models had similar 
improvements in TSS over GTG, we saw no improvement 
in AUC.  TSS is discrimination skill at the MOG threshold, 
0.375; AUC measures classification skill at many 
thresholds. Thus, we have improved forecasting 
performance at the operational MOG threshold, although 

 
Figure 4. Comparison of results produced by GTG (top), 
SVM (middle) and regression (low). Note different color 
scale for GTG. 
 
the ROC curves show us that there is still need for 
improvement in the algorithms overall.  
   
An example of the graphical display for a zero-hour 
forecast (2/15/2007 at 1Z at 35000ft) of the forecasting 
product is shown in Figure 4. Note that GTG predicts low, 
moderate, severe and extreme turbulence categories, while 
the current SVM and regression implementations just 
discriminate between MOG and LTM — though their 
probabilistic outputs could also be used to define intensity 
thresholds.  While both methods predict more turbulence 
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than does GTG, especially in areas not covered by in-situ 
data — indicating need for more algorithm tuning — they 
capture similar general patterns of turbulence. 

Conclusions 
Forecasting clear-air turbulence is critical to aviation 
safety. AI techniques can be very useful in meeting the 
challenges inherent in this process because they smoothly 
handle sparse, noisy data sets, significant levels of 
uncertainty, and gaps in the understanding of the 
underlying physical mechanisms — all of which are 
characteristics of the turbulence-prediction domain. This 
paper has detailed the first steps in applying the artificial 
intelligence techniques of support vector machines and 
logistic regression to clear-air turbulence forecasting, with 
promising results. While the GTG product uses fuzzy logic, 
past algorithmic choices were limited by the sparse PIREP 
observation data; now, the more objective and plentiful in-
situ data vastly widens the choices for prediction 
algorithms. We have shown not only improvement in 
forecasting performance for static weighted models using 
new subsets of CAT diagnostics found by feature subset 
selection, but also feasibility of implementing these AI 
algorithms in a real-time operational product setting. 
Currently, logistic regression outperforms SVMs, and static 
weighting outperforms the dynamically-weighted modeling 
approach, although further tuning of the algorithms, 
training data sets, and a longer test period — all planned 
next steps — could make the differences more clear and 
further improve performance. Other future work includes 
continued study of these algorithms for regionally-specific 
forecasting and probabilistic forecasting.  
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