
Execution of Temporal Plans with Uncertainty

Paul Morris ∗
Caelum Research Corporation

M/S 269-1 NASA Ames Research Center
Moffett Field, CA 94035

pmorris@ptolemy.arc.nasa.gov

Nicola Muscettola
Mail Stop 269-2

NASA Ames Research Center
Moffett Field, CA 94035

mus@ptolemy.arc.nasa.gov

Abstract

Simple Temporal Networks (STNs) have proved useful in ap-
plications that involve metric time. However, many applica-
tions involve events whose timing is uncertain in the sense
that it is not controlled by the execution agent. In this paper
we consider execution algorithms for temporal networks that
include events of uncertain timing. We present two such al-
gorithms. The first retains maximum flexibility, but requires
potentially costly updates during execution. The second sur-
renders some flexibility in order to obtain a fast execution
comparable to that available for ordinary STNs.

Introduction
Simple Temporal Networks (Dechter, Meiri, & Pearl 1991)
have proved useful in Planning and Scheduling applica-
tions that involve quantitative reasoning about time (e.g. (Bi-
enkowski & Hoebel 1998; Muscettolaet al. 1998)) because
they allow fast checking of temporal consistency after each
plan step. However this formalism does not adequately ad-
dress an important aspect of real execution domains: the oc-
currence time of some events may not be under the com-
plete control of the execution agent. For example, when a
spacecraft commands an instrument or interrogates a sensor,
a varying amount of time may intervene before the opera-
tion is completed. In cases like this, the execution agent
does not have freedom to select the precise time delay be-
tween events in accord with the timing of previously exe-
cuted events. Instead, the value is selected by Nature inde-
pendently of the agent’s choices. This can lead to constraint
violations during execution even if the Simple Temporal
Network appeared consistent at plan generation time. The
problem of control of temporal networks with uncertainty
was first addressed formally in (Vidal & Ghallab 1996;
Vidal & Fargier 1997), and was also studied in (Morris &
Muscettola 1999).

The previous work has been primarily concerned with al-
gorithms to determine various flavors ofcontrollability of
temporal networks with uncertainty. Controllability is a
property analogous to consistency in ordinary (without un-
certainty) temporal networks. This paper focuses instead on

∗Current Affiliation: RIACS.
Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

execution algorithms for temporal networks with uncertainty
and considers issues of flexibility and efficiency.

A method in widespread use for executing ordinary tem-
poral networks is to “harden” the network. That is, a spe-
cific solution is chosen that rigidly fixes the time of exe-
cution of all the events in the network. Note that this ap-
proach is inapplicable to networks with uncertainty because
of the unpredictable choices made by Nature (which may
not agree with the chosen solution), and is often undesir-
able even for ordinary temporal networks because it allows
no flexibility for dealing with unmodelled contingencies that
may nevertheless occur in practice. However, retaining flex-
ibility into execution imposes a burden of propagation to en-
sure that the windows of later timepoints are appropriately
narrowed as earlier timepoints are executed. Since a short
cycle time is paramount during execution, methods have
been developed (Muscettola, Morris, & Tsamardinos 1998;
Tsamardinos, Muscettola, & Morris 1998) to reformulate
the network in order to reduce the amount of propagation. A
central issue addressed in this paper is to what extent these
methods are applicable to networks with uncertainty.

Background
We review the definitions of Simple Temporal Net-
work (Dechter, Meiri, & Pearl 1991), Minimum Dispatch-
able Network (Muscettola, Morris, & Tsamardinos 1998),
and Simple Temporal Network with Uncertainty (Vidal &
Fargier 1997).

A Simple Temporal Network (STN) is a graph in which
the edges are labelled with upper and lower numerical
bounds. The nodes in the graph represent temporal events
or timepoints, while the edges correspond to constraints on
the durations between the events. Formally, an STN may
be described as a 4-tuple< N,E, l, u > whereN is a set
of nodes,E is a set of edges, andl : E → IR ∪ {−∞}
andu : E → IR ∪ {+∞} are functions mapping the edges
into extended Real Numbers. Figure 1 shows an exam-
ple of an STN. Figure 2 shows the correspondingdistance
graph(Dechter, Meiri, & Pearl 1991), which is an alternate
representation useful for mathematical analysis. Note that
lower bounds are negated to give the lengths of the reverse
edges. Edges of infinite length are omitted. (Given a dis-
tance graph, one can also find a corresponding STN, so the
representations are interchangeable.) An STN is consistent

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

A

B

C

D

[1,1]

[2,3]

[-∞,10]

[0,∞]

Figure 1: Simple Temporal Network.

A

B10

C

0 D

1

-1

3

-2

Figure 2: Distance Graph.

if and only if the distance graph does not contain a negative
cycle.

In (Dechter, Meiri, & Pearl 1991), it is shown how time
windows (upper and lower time bounds) can be determined
for each timepoint by propagations in the distance graph
starting from any designated initial timepoint. The upper
bound corresponds to the shortest-path distance from the ini-
tial timepoint to the given timepoint, while the lower bound
is the negation of the shortest-path distance in the oppo-
site direction. Shortest-path distances are efficiently deter-
mined by propagation methods such as the Bellman-Ford
algorithm (Cormen, Leiserson, & Rivest 1990). A solu-
tion (i.e., a globally consistent assignment of time values to
timepoints) can be incrementally constructed without back-
tracking by progressively extending a locally consistent as-
signment, with propagation of time windows occurring after
each extension.

An execution algorithm is essentially the same as an in-
cremental construction of a solution. However, there are two
important distinctions, as discussed in (Muscettola, Morris,
& Tsamardinos 1998). First, to be eligible for execution,
a timepoint must belive, i.e., the current time must lie be-
tween its upper and lower bounds. (Note that we maximize
flexibility by delaying fixing the time of a timepoint until it
is actually executed.) Second, suppose the shortest-path dis-
tance (in the distance graph) from a timepointA to a time-
pointB is negative. It follows that in all valid solutions, the
time assigned toB must precede that assigned toA. We say
B is anenabling conditionfor A. Notice that a naive incre-
mental execution algorithm may executeA beforeB, with
the resulting propagation forcingB into the past. To correct
this, it is necessary to determine all the enabling conditions
ahead of time, and defer executing timepoints until they are
enabled. (Note that a deadlock cannot occur since a consis-
tent STN has no negative cycles.)

The modified execution algorithm is still costly because
it requires a full propagation after each timepoint is exe-
cuted. A better approach (Muscettola, Morris, & Tsamardi-
nos 1998) is to convert the network to an equivalentmini-
mum dispatchablenetwork for whichlocal propagation(to
immediate neighbors only) is sufficent to ensure a valid ex-
ecution. Conversion to a minimum dispatchable network

is obtained by first computing the All-Pairs Shortest-Path
graph (Cormen, Leiserson, & Rivest 1990) (henceforth we
abbreviate this to the All-Pairs graph), and then eliminating
dominatededges. An edgeAB is dominated if there is a
timepointC such thatAC+CB = AB and either bothAB
andCB are non-negative or bothAB andAC are negative.
In the former case,AB is dominated byCB; in the latter,
byAC. If an edge is dominated, then removing it from the
All-Pairs graph does not change the set of valid executions.

Controllability problems (Vidal & Ghallab 1996; Vidal
& Fargier 1997) arise in STNs where the edges, which we
will call links, are divided into two classes,contingent links
andrequirement links. Contingent links may be thought of
as representing causal processes; their finishing times are
controlled by Nature, subject to the limits imposed by the
bounds on the contingent links. All other timepoints, which
we will call control points, are controlled by the agent,
whose goal is to satisfy the bounds on the requirement links.

Thus, aSimple Temporal Network with Uncertainty(Vidal
& Fargier 1997) (STNU) is a 5-tuple< N,E, l, u, C >,
whereN,E, l, u are as in a STN, andC is a subset of the
edges. The edges inC are called thecontingent links, and
the other edges are therequirement links. We require0 <
l(e) < u(e) <∞ for each contingent linke.

Each set of allowable durations for the contingent links
may be thought of as reducing the STNU to an ordinary
STN. Thus, an STNU determines a family of STNs, as in
the following definition.

SupposeΓ = < N,E, l, u, C > is an STNU. Apro-
jection (Vidal & Ghallab 1996) ofΓ is a Simple Temporal
Network derived fromΓ where each requirement link is re-
placed by an identical STN link, and each contingent link
e is replaced by an STN link with equal upper and lower
bounds[b, b] for someb such thatl(e) ≤ b ≤ u(e).

A boundaryprojection (Vidal & Fargier 1997) is one
where, for each contingent linke, the aboveb is chosen so
thatb = l(e) or b = u(e). Because of convexity, the mini-
mum shortest path distances over all projections can be cal-
culated using only the boundary projections. This makes it
feasible for many algorithms to essentially ignore the non-
boundary projections.

Execution Of STNU
Execution of an STNU is complicated by the necessity of
updating the network as new information is received. The
most common scenario is that the precise timing of a con-
tingent link finishing point is observed when the contingent
process finishes. This is analogous to the timing of a control
point becoming fixed when it is selected for execution. We
call this thestandardupdate scenario. However, other up-
date scenarios are possible. For example, in a spacecraft ap-
plication, the predicted time of closest encounter to a comet
may be progressively refined as the event approaches. On
the other hand, the precise time of the encounter might not
be available until some time after the event has occurred due
to delays involving communication or analysis.

In this paper we will consider two approaches to execut-
ing STNUs. The first, considered in this section, is a general

1. A = Set of all control points

current_time = 0

2. Arbitrarily pick a control point TP in A that is

live and enabled in all boundary projections.

3. Set TP execution time to current_time, and remove

TP from A. Halt if A is now empty.

4. Advance current time, propagating all updates

until some point in A is live and enabled.

5. Go to 2.

Figure 3: Execution Algorithm.

method that preserves maximum flexibility, but entails sig-
nificant computational cost. The second approach, consid-
ered in a later section, surrenders some flexibility in order to
achieve greater efficiency.

In (Morris & Muscettola 1999), the concept ofWaypoint
Controllability is introduced as a practical approach to en-
suring controllability. It is shown that a Waypoint Control-
lable network may be effectively decomposed into (1) an
induced STN involving only the waypoints, and (2) several
STNUs corresponding to the subnetworksbetweenthe way-
points. This decomposition may impact the choice of exe-
cution algorithm. The point to note is that the subnetworks
can be expected to be quite limited in size, which makes it
feasible to consider methods with asymptotic high complex-
ity. This lends plausibility to the algorithm to be considered
in this section, which is exponential in the number of inter-
acting contingent links.

A simple execution algorithm could proceed as if the net-
work were an ordinary STN and simply fail if propagation
causes the flexibility of a contingent link to be restricted.
The following algorithm does better by excluding current
values for control points that would lead to future restric-
tions on the uncontrollables.

We can formulate an execution algorithm in a manner
analogous to that for ordinary STNs. For this, we must (1)
propagate time windows, (2) determine whether a timepoint
is live and enabled, and (3) repropagate with updated infor-
mation. In the STNU case, updated information may result
from observations and refined predictions, as well as exe-
cutions. Note also that an update may arise from simple
passage of time, where a contingent link finishing point is
observed to have not yet occurred. Figure 3 summarizes the
overall algorithm.

Basic Propagation
The propagation in the execution algorithm is closely re-
lated to the propagation algorithm for determining Waypoint
Controllability that was introduced in (Morris & Muscettola
1999). The latter is similar to a Bellman-Ford distance prop-
agation in an ordinary STN, except it effectively propagates
in all boundary projections simultaneously. This is accom-
plished by splitting each distance value propagated across
a contingent link into two values corresponding to the dif-
ferent boundary projections. For example, a contingent link
A→ B with bounds[1, 3] corresponds to an STN link with
bounds[1, 1] or [3, 3] in different boundary projections. This
means a distance value of0 atA produces propagated values

of 1 or 3 atB. The algorithm carries forward both values,
but tags them according to which selection was used. In
this case, we could write the set of propagated tagged val-
ues as{1t, 3T }, wheret andT denote the[1, 1] and [3, 3]
selections, respectively. Note that the values may split again
at subsequent contingent links, leading to values involving
multiple choices. Thus, the propagated values acquire tags
reflecting all the boundary choices involved in their creation.

We will use the expressionvT to denote a valuev with
tagT . (We may writev, without superscript, if the tag is
empty.) A tagged valuevT1

1 subsumesa tagged valuevT2
2

if v1 ≤ v2 andT1 ⊆ T2. Subsumed values are subject to
deletion. Observe that we can propagate distance values just
like in an ordinary STN; the only difference is that sets of
tagged values are propagated to each node instead of simple
values. It is convenient to use a simplified notation for sets
of tagged values, writing1t3T instead of{1t, 3T }.

Windows and Updates
For execution purposes, we need to propagate both upper
and lower bounds, i.e., a time window. Each bound con-
sists of a set of labelled values, corresponding to the values
in the different boundary projections. Consider, for exam-
ple, a contingent linkA → B with bounds[1, 3]. A time
window of [0, 4] at A then propagates to a time window
of [1t3T , 5t7T] atB, wheret andT indicate the[1, 1] and
[3, 3] choices, respectively. The reader should pay particular
attention to the interval[3, 5] lying between the maximum
of the lower-bound values and the minimum of the upper-
bound values, which corresponds to the intersection of the
windows from all the boundary projections.

When an update occurs, we need to repropagate. Suppose,
in the above example, the lower bound for the contingent
link is increased from1 to 2. This affects both the lower and
upper bounds atB. The update of the lower bound atB is an
increase from1t3T to 2t3T , which is a potential tightening
of the intersection window. The change to the upper bound
atB is also an increase, from5t7T to 6t7T . However, an
increase in the upper bound is a potential loosening of the
intersection window, not a tightening.

The need to propagate predictive updates efficiently re-
quires a high degree of incrementality. In ordinary STNs, it
is difficult to achieve incremental propagation of loosened
bounds. However, the tags provide sufficient information
to identify the values that need revision. A reasonable de-
gree of incrementality is obtained by simply deleting val-
ues with tags involving the updated links, and repropagat-
ing from those links. (More selective deletion is possible
by including additional information in the tags. For exam-
ple, each contingent link gives rise to both a positive and
negative edge in the distance graph, and information about
which of those participated in a propagation could be used
to advantage. We omit the details.)

Liveness and Enablement
We next consider how to select a control timepoint for ex-
ecution. First, the timepoint must be live in all boundary
projections. This is equivalent to the current time lying be-

tween the maximum of the lower-bound values and the min-
imum of the upper-bound ones. As an example, consider the
network

[1,100] [-1,50]
A =======> B <------- C

whereA ==> B is a contingent link,B <-- C is a re-
quirement link, andA is the start point. The initial window
at C is given by[−49−t50−T , 2+t101+T], soC is not live.
SupposeB is observed to occur at time 25. A new propa-
gation produces a window of[−25, 26] for C , which makes
it live. On the other hand, suppose it is observed thatB has
notoccurred by time 50. The bounds for the contingent link
can be narrowed to[50, 100]. This update propagates to give
[0−t50−T , 51+t101+T] for C. Notice thatC is now live in
all projections even thoughB has not finished yet.

The second condition for execution is that the timepoint
be enabled in all boundary projections. This poses a minor
complication compared to an ordinary STN execution be-
cause the set of projections may contract as updates occur.
We can still compute in advance all the paths that could pos-
sibly be required for enablement. (Note that each path will
have a set of tagged values as its distance.) However, as pro-
jections are excluded due to updates, some of the paths may
cease to be enabling. This requires repeated updating and
checking of the enablement distances to see if they are still
negative in some projection.

It is easy to see that the algorithm will never choose an ex-
ecution time that is inconsistent with some projection. How-
ever, an execution can still fail, even for a network where all
projections are consistent. This can happen if a situation
occurs where immediate execution and deferred execution
each exclude some of the projections. An example of this
is the impossible task where we need to make preparations
tightly in advance before some event whose timing is un-
known.

Consider, for example, the network

[1,100] [1,50]
A =======> B <------ C

and assume the standard update scenario. Note thatC must
occur beforeB. However, any time we choose forC before
time 50 will be inconsistent with some late occurrence of
B. On the other hand, deferring the choice until time 50
will fail if B occurs early. For instance, the updated win-
dow for C at time 25, ifB has not occurred earlier, will be
[−25−t50−T , 24+t99+T]. Note thatC is not live, so it can-
not be executed. IfB now occurs, the execution has failed.

Dispatchability

We next consider the extent to which the methods
of (Muscettola, Morris, & Tsamardinos 1998) can speed up
the execution algorithm, in the framework where maximum
flexibility is retained.

The transformation to the All-Pairs graph is straightfor-
ward. However, the distances must be computed using
tagged values. This can be costly, but is done offline before
the execution begins.

A complication arises in the removal of dominated edges.
In this framework, an edge may only be removed if it is dom-
inated inall projections. This presents fewer opportunities
for removal, and seems to exclude the possibility of arriv-
ing at aminimumdispatchable network. If interacting con-
tingent edges are few in practice, as seems likely with the
waypoint controllability approach, there should nevertheless
be substantial savings from using a pruned dispatchable net-
work.

A second complication is with respect to the arbitrary up-
dates envisaged in this framework. The proof of theorem 1
in (Muscettola, Morris, & Tsamardinos 1998), upon which
the dominance analysis is based, relies on two assumptions
about the type of update that occurs during execution: first,
the update only occurs for timepoints that are enabled; sec-
ond, the update narrows the window to a single value. The
upshot of this is that local propagation will be in general be
insufficient for predictive updates to contingent links. Full
propagation can be used instead. On the positive side, the
updates arising from executions and sharp observations (that
collapse the interval to a single point) do satisfy the criteria,
and for those, local propagation is sufficient.

Safe Networks
We now turn to an approach that sacrifices some flexibility
in order to avoid the exponential complexity of the algorithm
in the previous section. This applies to scenarios where the
precise finishing time of a contingent link becomes known
as soon as it occurs. The key idea is as follows. Suppose
we pretend that an STNU is an ordinary STN, and the con-
tingent links are just ordinary links. Suppose also that the
network has the property that, for every valid execution and
for each contingent link, the only effective propagations to
the contingent link finishing point are those that propagate
through the contingent link itself. In this case, the propa-
gations do not affect the possible durations of the contin-
gent links, and Nature’s flexibility is not impaired. Con-
sequently, we can pretend that the agent is making all the
choices, and carry out the execution as if the network was
an ordinary STN. In particular, simple values can be prop-
agated; no tags are needed. Furthermore, we can apply the
methods of (Muscettola, Morris, & Tsamardinos 1998) to
compute a minimum dispatchable network, and use only lo-
cal propagation during execution.

An STNU with the above felicitous property will be called
a safenetwork. Our first task is to obtain a characteriza-
tion of the property that is more easily checked. It turns
out that the dominance relation introduced in (Muscettola,
Morris, & Tsamardinos 1998) is relevant here. The charac-
terization will be in terms of the STN obtained from a given
STNU by ignoring the distinction between contingent links
and requirement links. We call this theassociated STNof
the given STNU. Note that in the distance graph of the asso-
ciated STN, the forward edge arising from a contingent link
will have positive length, while the corresponding reverse
edge will have negative length. These edges will be referred
to as “contingent edges.”

The following terminology will also be useful. In an STN
distance graph, an edge fromA toB is a tight edgeif there

is no path fromA toB whose distance is less than the length
of the edge.

To avoid certain technical difficulties, it is necessary to
exclude networks where two contingent links have the same
finishing point. This does not entail any loss of generality
because the coincident finishing points can be separated and
connected by a[0, 0] requirement link instead. (Semanti-
cally, there really are two points that are independently con-
trolled by Nature.)

This leads to the following characterization.

Theorem 1 (Safety Theorem)An STNU is safe if and only
if in the distance graph of the associated STN the following
three properties hold:

(1) The forward and reverse edges arising from each con-
tingent link are tight edges. (Thus, they survive unchanged
in the All-Pairs graph.)

(2) In the All-Pairs graph, the forward edge arising from
each contingent linkA → B dominates all non-negative
edges whose destination isB.

(3) In the All-Pairs graph, the reverse edge (fromB to
A) arising from each contingent linkA → B dominates all
negative edges whose source isB.

Proof: First suppose (1) is violated. Then one of the edges
arising from a contingent linkA→ B is squeezed. Consider
what happens whenA is executed. The propagation along
the squeezing path will supersede the propagation along the
squeezed contingent edge. Thus, the network is not safe.

It remains to show that if (1) holds, then (2) and (3)
together are equivalent to safety. This is a straightfor-
ward consequence of the methods of (Muscettola, Morris, &
Tsamardinos 1998). Since (1) holds, we need only consider
dispatching executions in the All-Pairs graph. LetA → B
be a contingent link. By Theorem 1 of (Muscettola, Mor-
ris, & Tsamardinos 1998), the only effective propagations
toB are those involving non-negative edges whose destina-
tion isB and negative edges whose source isB. Condition
(2) states that the only effective non-negative edge propaga-
tion is the one occurring along the forward contingent edge.
Similarly condition (3) states that the only effective negative
edge propagation is the one occurring along the reverse con-
tingent edge. Thus, (2) and (3) together state that the only
effective propagations toB are those occurring along the
two contingent edges, which is the requirement for safety.
2

It follows from the theorem that for a safe STNU, the as-
sociated STN can be converted into a minimum dispatch-
able network in which the contingent links survive.1 More-
over, for a contingent linkA → B in this minimum dis-
patchable network, the forward contingent edge will be the
only non-negative edge remaining whose destination isB,
and the reverse contingent edge will be the only negative
edge remaining whose source isB. This makes safety easy
to check by first converting to the minimum dispatchable
network. With minor modifications, the algorithm for con-
structing a minimum dispatchable graph in (Tsamardinos,

1If contingent links with coincident finishing points were al-
lowed, this would not necessarily be the case because then there
could be mutually dominating contingent links.

A B

[100,150]

C

[60,80] D
[50,100]

[1,100]

Figure 4: Safe Network.

Muscettola, & Morris 1998) can thus be used to verify safety
in O(EN +N2 log(N)) time.

As an example of a safe network, consider figure 4, where
A → B is a contingent link. Notice that no matter what
time C is executed (within its window), the duration of
A → B will not be further restricted. AlsoD does not
affect the duration since it is constrained to occur afterB.
It is easy to verify, using the Triangle Rule of (Muscettola,
Morris, & Tsamardinos 1998), that the dominance relations
required by the theorem hold in the All-Pairs graph. Note
that a minimum dispatchable graph exists that is identical to
the original network except the linkC → B is deleted.

Predictive updates that narrow the temporal bounds of
contingent links can be accommodated within this frame-
work. It is not hard to see that these cannot make a safe net-
work unsafe. However, each such update requires full rather
than local propagation, since it does not satisfy the criteria
of dispatching executions.

Potential Safety
Few networks encountered in practice are likely to be safe.
However, many networks that are not initially safe can be
made so by judicious tightening of the constraints.

Consider for example the network

[1,100] [-50,50]
A =======> B <---------
| |
| |
| [0,150] |

--------------------> C

which is not safe since ifC is executed at time 10,B will be
forced to occur before time 60.

Notice that the network is already in All-Pairs form. We
can use the criteria of the Safety Theorem to determine how
to make it safe. The only edge at issue is the one of length 50
from C to B arising from theC --> B link. This violates
condition (2). There are two ways to remove this violation.

First, we could make the edge be dominated by tight-
ening up the bounds of theA --> C link as dictated by
the Triangle Rule of (Muscettola, Morris, & Tsamardinos
1998). This requires that the distance graph edges satisfy
CA + AB = CB, which can be accomplished by tighten-
ing theA --> C bounds to[50, 150] (increasing the lower
bound). It is easy to see the network is now safe: ifB oc-
curs beforeC, there is no problem (sinceB then propagates
to C rather than vice versa); otherwise the propagation from
C to B merely ratifies the situation thatB has not yet oc-
curred. For example, ifB has not occurred beforeC is ex-
ecuted at time 60, then the propagation requiresB to occur

within [10, 110], which is not restrictive given the current
time of 60.

The second way to remove the violation is to eliminate
the non-negative status of the edge. This can be done by
tightening theC --> B bounds to[−50,−1] (reducing the
upper bound). Note that the[−50,−1] link is equivalent to a
[1, 50] link in the opposite direction. This forcesC to occur
afterB, which also makes the network safe.

With both methods, we must take care to ensure the tight-
ening does not squeeze the contingent link, or produce an in-
consistency. For example, ifA --> C had bounds[0, 100]
then the second method would not work since it would re-
strict the contingent link to[1, 99].

It is easy to see that this leads to a general algorithm for
making a network safe, or determining that this is not pos-
sible. Each violation of the Safety Theorem can potentially
be repaired in two ways. After a repair is attempted, the
All-Pairs graph must be recomputed to determine whether a
contingent link has been squeezed, or an inconsistency has
been introduced. If so, the repair fails.

A network for which the repair algorithm succeeds will be
calledpotentially safe. Since each choice of possible repairs
can be verified in polynomial time, we see that the problem
of determining potential safety is inNP .

Examples suggest that the property of being potentially
safe is very similar to that ofDynamic Controllability, as de-
fined in (Vidal & Fargier 1997). The precise relationship be-
tween them remains to be determined. Note that anNP al-
gorithm for Dynamic Controllability has not been presented
in the literature.

Observe that in making safe a potentially safe network,
we are giving up flexibility in advance. This complicates
the question of predictive updates of contingent links. We
could accommodate them, as discussed previously, by doing
a full propagation, but this would not take advantage of the
flexibility-enhancing effect of narrowing a contingent link.
To do that, we would need to redo the repairs required for
safety, which might be too costly in practice during execu-
tion.

Unfortunately, not all networks that can be effectively ex-
ecuted can be made safe. Consider the network

[1,200] [-1,100]
A =======> B <---------
| |
| |
| [0,100] |

--------------------> C

The following execution algorithm is effective:

if B occurs before time 99
then execute C at 1 unit later
else execute C at the fixed time 100

The first possibility for making this safe would be to in-
crease theA --> C lower bound to 100 in an attempt to
satisfy the Triangle Rule. However, this would squeeze the
contingent link, forcing an increase in the lower bound to
99. The other possibility is to decrease theC --> B upper
bound to -1, so thatC occurs afterB. However, that also

squeezes the contingent link, forcing a decrease in the upper
bound to 99.

This raises the possibility of using the safety analysis to
synthesize the conditional execution strategy noted above.
For example, the given network could be specialized to two
“cases” where the contingent link bounds are restricted to
ranges of[1, 99] and [99, 200], respectively. Each of these
can be made safe separately, leading to the two branches of
the strategy. This is a topic for future work.

Acknowledgments
We thank Thierry Vidal for useful discussions, and also
thank the referees for their suggestions.

References
Bienkowski, M. A., and Hoebel, L. J. 1998. Integrating AI
components for a military planning application. InProc. of
Fifteenth Nat. Conf. on Artificial Intelligence (AAAI-98).
Cormen, T.; Leiserson, C.; and Rivest, R. 1990.Introduc-
tion to Algorithms. Cambridge, MA: MIT press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks.Artificial Intelligence49:61–95.
Morris, P., and Muscettola, N. 1999. Managing tempo-
ral uncertainty through waypoint controllability. InProc.
of Sixthteenth Int. Joint Conf. on Artificial Intelligence
(IJCAI-99).
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998.
Remote agent: to boldly go where no AI system has gone
before.Artificial Intelligence103(1-2):5–48.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. InProc.
of Sixth Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR’98).
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution.
In Proc. of Fifteenth Nat. Conf. on Artificial Intelligence
(AAAI-98).
Vidal, T., and Fargier, H. 1997. Contingent durations in
temporal CSPs: From consistency to controllabilities. In
Proc. of IEEE TIME-97 International Workshop.
Vidal, T., and Ghallab, M. 1996. Dealing with uncer-
tain durations in temporal constraint networks dedicated to
planning. InProc. of 12th European Conference on Artifi-
cial Intelligence (ECAI-96), 48–52.

