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Abstract 
This paper presents a logical account of sensor data 
assimilation in a mobile robot, based on abduction. 
Unlike previous work, the present formulation handles 
sensor noise as well as motor noise. In addition, it 
incorporates two significant technical advances. The use 
of determining fluents to deal with non-determinism 
obviates the need for a special form of abduction, and the 
use of uncertain object boundaries alleviates a problem 
with multiple explanations. 

Introduction 
In [Shanahan, 19961, a logical characterisation of robot 
sensor data assimilation via abduction is presented. The 
methodology used in that paper, as well as the present 
work, comprises the following three steps. First, design a 
generic logical formalism for representing and reasoning 
about action, change, space and shape. Second, use this 
formalism to build a theory of the robot’s relationship to 
the world, that is to say, a theory describing the effect of 
the robot’s actions on the world and the impact of the world 
on the robot’s sensors. Third, view sensor data assimilation 
as abduction with this theory. The role of abduction is to 
hypothesise a collection of objects whose shapes and 
locations are sufficient to explain the robot’s sensor data. 
Any algorithm for deployment on the actual robot which is 
provably correct with respect to this abductive 
characterisation is, in effect, a map-building algorithm. 
The key features of the informatic situation confronting a 
mobile robot are incompleteness, due to the robot’s limited 
window on the world, and uncertainty, due to noise in its 
sensors and motors. The topic of noisy motors is discussed 
at length in [Shanahan, 19961. In that paper, noise is 
considered as a kind of non-determinism, and a consistency- 
based form of abduction is used. But the treatment of 
incompleteness and uncertainty is unsatisfactory for a 
number of reasons. Chief among these is the profligacy of 
the collection of explanations licensed by abduction for a 
given stream of sensor data. Other reasons include the 
difficulty of performing, or even proving properties of, 
consistency-based abduction. 
This paper sets out to remedy the deficiencies of the earlier 
work through the provision of a cleaner and more versatile 
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logical account of sensor data assimilation. To deal with 
the multiple explanations problem, objects are represented 
with uncertain boundaries. To cope with noise, the method 
of determining fluents replaces the use of non-deterministic 
trajectories in [Shanahan, 19961. This permits the use of 
standard, as opposed to consistency-based, abduction. 
Finally, the robot that formed the basis of the earlier work 
was equipped with a very simple collection of sensors, 
namely three bump switches. The robot under discussion 
here has a suite of eight infra-red proximity sensors, 
supplying much richer sensory input. This forces us to 
confront the issue of sensor noise. (There is no sensor 
noise as such with a bump switch.) Accordingly, the 
present paper, unlike [Shanahan, 19961, supplies a 
treatment of sensor noise as well as motor noise. 

epresenting Action 
The first step in the methodology outlined in the 
introduction is the development of a generic formalism for 
representing and reasoning about action, change, space and 
shape. This section concerns the part of the formalism for 
reasoning about action and continuous change, which is 
based on the circumscriptive event calculus [Shanahan, 
19971. The same formalism is employed in [Shanahan, 
19961. Because this material is presented in considerable 
detail elsewhere, the description here will be kept very 
brief. 
A many sorted language is assumed, with variables for 
fluents, actions (or events), and time points. We have the 
following axioms, whose conjunction will be denoted 
CEC. Their main purpose is to constrain the predicate 
HoldsAt. HoldsAt(f,t) represents that fluent f holds at time 
t. All variables are universally quantified with maximum 
scope, unless otherwise indicated. 

HoldsAt(f,t) t- Initiallyp(f) A 1 Clipped(O,f,t) (ECU 
1 HoldsAt(f,t) t (I33 

InitiallyN(f) A T Declipped(O,f,t) 
HoldsAt(f,t2) t 

Happens(a,tl) A Initiates(a,f,tl) A 
t 1 c t2 A l Clipped(t 1 ,f,t2) 

1 HoldsAt(f,t2) t- 

(EC3) 

(EC4) 
Happens(a,tl) A Terminates(a,f,tl) A 

tl <t2A l Declipped(t1 ,f,t2) 
Clipped(tl ,f,t2) ++ (EC5) 

3 a,t [Happens(a,t) A tl < t < t2 A 

[Terminates(a,f,t) v Releases(a,f,t)]] 
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non-determinism was incorporated into the robot’s 
trajectory as it moved forwards. The present paper takes a 
somewhat different approach, which I will now outline. 
The method for dealing with non-determinism adopted here 
involves the use of determining fluents (see [Shanahan, 
1997, Chapter 15]), which are related to the noise terms 
introduced for the same purpose by Poole [ 19951. With the 
method of determining fluents, actions with non- 
deterministic effects are transformed into actions with 
deterministic effects. The trick is simply that the outcome 
of an action with non-deterministic effects is made to 
depend on a fluent, called a determining fluent, which 
doesn’t appear elsewhere in the formalisation, and whose 
value at the time of the performance of the action is 
unknown. This treatment of non-determinism obviates the 
need for a special form of abduction, such as the 
consistency-based form of abduction used in [Shanahan, 
19961. Instead, as we’ll see later on, the determining fluents 
are simply made abducible. 
In the formalisation of the Khepera robot, the Go and 
Rotate actions have non-deterministic effects: the velocity 
of the robot after a Go action is only known within certain 
bounds, and the angular velocity of the robot after a Rotate 
action is only known within certain bounds. In what 
follows, the constant V denotes the robot’s median 
velocity, measured in robot radii per unit of time, and the 
constant W denotes the robot’s median angular velocity in 
degrees per unit of time. The formalisation also uses the 
constants ev and ew. After a Go action, the robot’s 
velocity is V f Ev. Similarly, after a Rotate action, the 
robot’s.angular velocity is W + zzW. ~ 
To capture’the effect of the Go and Rotate actions using 
determining fluents, the functions VelNoise and RotNoise 
are introduced. These fluents perturb the robot’s (angular) 
velocity at the outset of a period of motion. If a Go action 
is performed at time t, then the term VelNoise(t) denotes 
the difference e, where --Ed I e I Q,, between the robot’s 
actual velocity after t and the median velocity V. Similarly, 
if a Rotate action is performed’ at’ time t, the term 
RotNoise denotes the difference e, where --Ed I e I Ed, 
between the robot’s actual angular velocity after t and the 
median angular velocity W. 
We have the following Initiates and Terminates formulae, 
which introduce the two new fluents Moving and Turning. 
The fluent Moving(v) holds when the robot is moving at 
velocity v, and the fluent Turning(w) holds when the robot 
is rotating with angular velocity w. 

Initiates(Go,Moving(V+VelNoise(t)),t) (El) 
Initiates(Rotate,Turning(W+RotNoise(t)),t) (W 

The following two formulae constrain the values of 
VelNoise and RotNoise to fall within the required range. 

-E,, < VelNoise(t) I cv w> 
-&w I RotNoise < ~w W) 

Next, we need to define the continuous variation that takes 
place in the robot’s bearing and location while, 
respectively, the Turning and Moving fluents hold. The 
fluent Facing(r) holds when the robot’s compass bearing is 

r degrees relative to North. The fluent Location(y) holds 
when the robot’s centre is at point y The continuous 
variation in the Location and Facing fluents is captured by 
the following Trajectory formulae. 

Trajectory(Moving(v),t,Location(yl), LngW) t 

HoldsAt(Facing(r),t) A HoldsAt(Locazon(y2),t) A 
(T*) 

FromTo(c,y2,yl) A Bng(c,r) 
Trajectory(Turning(w),t,Facing(r+d.w),d) t 

HoldsAt(Facing(r),t) 
cm 

After a Go action, the Location fluent is no longer subject 
to default persistence. Similarly, after a Rotate action, the 
Facing fluent is no longer subject to default persistence. 

Releases(Go,Location(y),t) 03 
Releases(Rotate,Facing(r),t) (EA) 

The following Initiates and Terminates formulae capture the 
effects of the Stop action. 

Terminates(Stop,Moving(v),t) 
Terminates(Stop,Turning(w),t) 
Initiates(Stop,Location(y),t) t 

HoldsAt(Moving(v),t) A v > 0 A 

HoldsAt(Location(y),t) 
Initiates(Stop,Facing(r),t) t 

HoldsAt(Turning(v),t) A w # 0 A 

HoldsAt(Facing(r),t) 

(E8) 

Taken in conjunction with the event calculus axioms of 
Section 1, the formulae above can be used deductively for 
prediction (temporal projection). Given a description of a 
sequence of robot actions, the robot’s location at any given 
time can be predicted within the tolerances allowed by the 
non-determinism. 
Let’s take a look at an example. Let M be the conjunction 
of the following formulae. 

Initiallyp(Location(L0)) Initiallyp(Facing(R0)) 
Let N be the conjunction of the following formulae. 

Happens(Go, 1000) Happens(Stop,3000) 
Happens(Rotate,4000) Happens(Stop5000) 
Happens(Go,6000) 

These actions are illustrated on the right of Figure 1. 
In addition, we require some uniqueness-of-names axioms. 
The following will suffice for now, although we will adopt 
a different set in the next section. 

UNA[Go, Rotate, Stop] (3.1) 
UNA[Moving, Turning, Location, Facing] (3.2) 

Let E be the conjunction of (El) to (E8). Let B be the 
conjunction of, 

0 the event calculus axioms CEC, 
0 the background axioms (Bl) to (B4), 
0 the Trajectory formulae (Tl) and (T2), and 
0 the uniqueness-of-names axioms (3.1) and (3.2). 

Following the prescription for overcoming the frame 
problem set out in Section 1, we’re interested in the logical 
consequences of the following formula, which will be 
denoted C. 
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CIRC[N ; Happens] A 
CIRC[E ; Initiates, Terminates, Releases] A M A B 

The logical consequences of X are expected to describe the 
path of the robot. However, the non-deterministic nature of 
the robot’s actions, reflecting the fact that its motors are 
noisy, means that Z doesn’t fix the exact location of the 
robot at any time after its first Go action. Rather, we 
should expect Z to yield consequences of the form A t- I, 
where A describes the robot’s location to the bounds within 
which it can be known, and l? constrains the determining 
fluents VelNoise and RotNoise accordingly. A will 
characterise the robot’s location in terms of a graph of 
curves and locations corresponding to the path the robot 
followed to get there. The following proposition gives an 
example. 
Proposition 3.3. Let A denote the conjunction of the 
following formulae, in which cl, y 1, c2, and y2 are free. 

FromTo(cl,LO,y 1) A Bng(c1) = RO A 

2OOO.(V - Ev) I Lng(c1) I 2OOO.(V -t Ev) A 

HoldsAt(Location(y1),3000)] 
FromTo(c2,yl,y2) A lOOO.(W - &w) 5 

Bng(c2) - Bng(c1) I lOOO.(W + &w) A 

2OOO.(V - Ev) 5 Lng(c2) 5 2OOO.(V + E”) A 

HoldsAt(Location(y2),8000) 
Let I’ denote the conjunction of the following formulae, in 
which cl, y 1, c2, and y2 are also free. 

VelNoise( 1000) =w - V 

RotNoise(4000) - Bng(c~&~ng(cl) - W 

VelNoise(6000) =s - V 

We have C, I= 3 cl,yl,c2,y2 [A +- I]. 
Proof. See full paper cl 

4 The Effect of the World on the Robot 
The formulae of the previous section describe the effect of 
the robot’s actions on the world. Now we need to 
characterise the way the robot’s interactions with the world 
effect its sensors. Once again, noise is a big issue. This 
time the noise is in the robot’s sensors, which deliver 
uncertain information about the world. As before, noise is 
considered as non-determinism. 
Each of the Khepera’s infra-red proximity sensors supplies 
an unbroken (but discretely sampled) stream of values 
between 0 and 1023. A high value suggests the proximity 
of an obstacle, but unsurprisingly no straightforward 
functional correspondence exists between the value of a 
sensor and the distance to the nearest object. As well as 
being subject to random fluctuations and spikes, the value 
delivered by a sensor at any time depends on the sizes, 
shapes, orientations and reflective properties of the objects 
within its range. So the question arises of how to extract 
useful distance information from the sensor signal, 

A standard way would be to use a Gaussian and/or Kalman 
filter. Although benefit can still be derived from pre- 
filtering sensor signals, the approach taken in the present 
paper places the burden of interpreting sensor data at a 
higher level. To begin with, raw sensor data is transformed 
into a sequence of sensor events. Two types of sensor event 
are incorporated into the formalisation: LatchOn and 
LatchOff, which will be parameterised by the identifier of 
the sensor in question. Sensor data assimilation is then 
performed through abduction, whose task is to construct an 
explanation of these sensor events in terms of a map of the 
obstacles in the robot’s workspace. 
Intuitively, a LatchOn event indicates that an object has 
been encountered, while a LatchOff event indicates that the 
robot has found free space. An obvious way to implement 
this is to trigger a LatchOn event whenever the sensor 
signal exceeds a threshold, and a LatchOff event whenever it 
dips below that threshold. However, with this method, the 
presence of random noise in the sensor signal gives rise to 
the possibility of a flurry of LatchOn and LatchOff events 
when the signal is close to the threshold value. 
Accordingly, in the present approach, sensor events are 
associated with two threshold values 61 and 62, where 61 > 
62. When a sensor value exceeds 61 then a LatchOn event 
occurs. Conversely, when the sensor value dips below 62, a 
LatchOff event occurs. 
The fluent High holds when the sensor signal is greater 
than 61, and the fluent Low holds when the sensor signal is 
less than 62. Like the LatchOn and LatchOff events, these 
fluents are parameterised by the identifier of the sensor in 
question. Sensors will be grouped into pairs whose values 
will be aggregated, and our main concern will be with the 
pair 0 and 1, which will be called the left sensor, and the 
pair 4 and 5, which will be called the right sensor (see 
Figure 1). The following two clauses constrain the High 
and Low fluents for the left sensor. 

Holds(Low(Left),t) t 033) 
7 3 y,r,c,x [HoldsAt(Location(y),t) A 

HoldsAt(Facing(r),t) A 

HoldsAt(Boundary(x,c),t) A 

Fsen(y,r-45,c) + SenNoise(Left,t) > 621 
HoldsAt(High(Left),t) t CW 

HoldsAt(Location(y),t) A HoldsAt(Facing(r),t) A 

HoldsAt(Boundary(x,c),t) A 

F,en(y,r45,c) + SenNoise(Left,t) > Sl] 
The first of these formulae describes the conditions under 
which the value of the left sensor falls below 62 at time t. 
First, there has to be an object whose boundary bears a 
suitable relation to the position and direction of the left 
sensor at t. (The term Boundary(x,c) denotes a fluent which 
holds if the curve c is part of the boundary of object x.) The 
influence of such an object on the value of the sensor is 
given by the function Fsen, which allows us to abstract 
away from the sensor’s characteristics. Fsen(y,r,c) denotes 
the median value the sensor would have if located at y on a 
bearing r in a world containing only the object boundary c. 
This value is combined with the effect of sensor noise at 
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time t, given by the term SenNoise(Left,t), to yield the 
actual value of the sensor. 
Symmetrical formulae are required for the right sensor. 

Holds(Low(Right),t) t WI 
13 y,r,c,x [HoldsAt(Location(y),t) A 

HoldsAt(Facing(r),t) A 
HoldsAt(Boundary(x,c),t) A 

Fsen(y,r+45,c) + SenNoise(Right,t) > 621 
HoldsAt(High(Right),t) t- (B6) 

HoldsAt(Location(y),t) A HoldsAt(Facing(r),t) A 

HoldsAt(Boundary(x,c),t) A 

F,,n(y,r+45,c) + SenNoise(Right,t) > 61 
The SenNoise function plays a similar role to the VelNoise 
and RotNoise functions. The effect of sensor noise is 
assumed fall within in a certain range although, of course, 
the exact amount of sensor noise at any time is unknown. 

-us < SenNoise(t) < 8s (B7) 
The effects of sensor events and the conditions under which 
they are triggered are given by the following formulae, 
which are generic to both the left and right sensors. 

Happens(LatchOn(d),t) t (W 
1 HoldsAt(On(d),t) A HoldsAt(High(d),t) 

Happens(LatchOff(d),t) t- (H2) 
HoldsAt(On(d),t) A HoldsAt(Low(d),t) 

Initiates(LatchOn(d),On(d),t) (E9) 
Terminates(LatchOff(d),On(d),t) @lo) 

The On and Off fluents ensure that LatchOn and LatchOff 
events only occur when a threshold is passed. 
Finally, we have two uniqueness-of-names axioms. 

UNA[Go, Rotate, Stop, LatchOn, LatchOff] @37) 
UNA[Moving, Turning, Location, (BQ 

Facing, Boundary, On, High, Low] 
We’re now in a position to view sensor data assimilation as 
abduction. Given a sequence of sensor events, the task is to 
construct an explanation of those events by postulating the 
existence of objects of suitable shapes and locations. This 
task is essentially abductive. Roughly speaking, if the 
sequence of sensor events is represented by the formula Y, 
and we are given formulae Z, representing the relationship 
between the robot and the world, and AN, representing the 
robot’s actions, then we are seeking a formula AM such 
that, 

ZAANAAM~Y. 
Care must be taken when using abduction to explain 
observations in the context of actions with non- 
deterministic effects. The problem is that an observation - 
in this case Y - can have a greater degree of precision 
than can be explained by the occurrence of an action with a 
non-deterministic effect. However, if the method of 
determining fluents is used, this difficulty can be 
circumvented by including values for those fluents in the 
explanation. 
AM is, first and foremost, a map of the world in which, 
because of motor and sensor noise, the boundaries of 
objects are not precisely given. But because noise is treated 

as non-determinism, AM will also have to contain a certain 
amount of unwanted junk. This takes the form of formulae 
that assign values to the determining fluents representing 
the noise present in the motors and sensors. These formulae 
will be stripped from AM. 
Before moving on to an example, a further definition is 
required. In order to rule out explanations which posit 
phantom objects, we want our explanations to entail not 
only the occurrence of the events in Y, but also the non- 
occurrence of events not in Y. Accordingly, we will be 
looking for explanations of u/ A COMP[‘u], where 
COMP[Y] is defined as follows. 
Definition 4. I. 

COMP[‘P] ‘def 
[Happens(a,t) A [a = LatchOn v a = LatchOff(d -+ 

v [ 
(W)E I- 

a=ar\t=z] 

where r = {(a,@ I Happens(a,z) E Y”}. cl 

5 A Worked Example 
Figure 1 shows the robot encountering a wall. After 
detecting the wall, the robot rotates so that it is sideways 
on to the wall, then follows it for a while until coming to 
a halt. At some time during the robot’s turn, its left sensor 
will detect the wall. This is the sensor event we want to 
explain. 
Let Ml be the conjunction of the following formulae. 

Initiallyp(Location(L0)) 
Initiallyp(Facing(R0)) 

Let N be the conjunction of (Hl) and (H2) with the 
following formulae. 

InitiallyN(On(Left)) InitiallyN(Gn(Right)) 
Happens(Go, 1000) Happens(Stop,3000) 
Happens(Rotate,4000) Happens(Stop,5000) 
Happens(Go,6000) Happens(Stop,8000) 

Let Y be the following formula. 
Happens(LatchOn(Left),4500) 

Let E be the conjunction of (El) to (ElO). Let B be the 
conjunction of, 

0 the event calculus axioms CEC, 
0 the background axioms (B 1) to (B8), and 
0 the Trajectory formulae (Tl) and (T2). 

Let M2 be the conjunction of formulae (5.1) to (5.11) 
below. As we’ll see shortly, M2 is an explanation of v. 
M2 has several components. For the interval up to the time 
the robot stops having detected the wall, we have, 

FromTo(Cl,LO,Y 1) A Bng(C1) = RO A (5.1) 
2OOO.(V - Ev) I Lng(C1) I 2OOO.(V + Ev) 

13 c,x,t [Initiallyp(Boundary(x,c)) A (5.2) 
1000 5 t < 3000 A 

F,,n(LOC(t),Bng(C1)+45,c) + 
SenNoise(Right,t) > 611 
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13 c,x,t [Initiallyp(Boundary(x,c)) A 
1000 I t < 3000 A 

(5.3) 

J&n(LOC(t),Bng(C 1)-45,c) + 
SenNoise(Left,t) > 611. 

This collection of three formulae is typical. In essence, it 
says that there are no objects within a certain range 
(constrained by the characteristics of the sensors) either side 
of a line Cl which starts at LO and ends at Y 1. The 
locations of Cl’s start and end points are not precisely 
known. Note the inclusion of the noise terms in (5.2) and 
(5.3). 
LOC and DIR are defined, using standard trigonometric 
functions, to yield the location and bearing of the robot for 
any given time, relative to landmark locations and bearings, 
such as LO, Y 1, Bng(C1) and Bng(C2). 
For time 4500, when the left sensor detects the wall, we 
have, 

Zl c,x [Initiallyp(Boundary(c,x)) A 
F~en(Yl,Bng(Cl)-45c) + 

SenNoise(Left,4500) > Sl]. 

(5.4) 

M2 doesn’t require a component for the interval between 
times 3000 and 4500, since neither its location nor its 
sensor data change during that time. For the interval 
between the left sensor’s detection of the wall and the end 
of the rotation, we have, 

3 c,x [Initiallyp(Boundary(c,x)) A 
b?[4500<t~5000 + 

(5.5) 

Fsen(Y 1 ,DIR(t)-45,c) + SenNoise(Left,t) > 6211. 
Note that (5.4) refers to the higher threshold 61, while (5.5) 
refers to the lower threshold 62. This is because the sensor 
value has to exceed 61 at least momentarily for a LatchOn 
event to occur. For the On fluent to continue holding, 
however, it’s only necessary for it to remain above 62. For 
the interval during which the robot is wall-following, we 
have, 

FromTo(C2,Y 1 ,Y2) A (5.6) 
lOOO.(W - ew) I Bng(C2) - Bng(C1) I 

looo.(w + &w) A 

2OOO.(V - Ev) < Lng(C2) I 2OOO.(V + EV) 
13 c,x,t [Initiallyp(Boundary(x,c)) A (5.7) 

6000 <t< 8000 A 

Fsen(LOC(t),Bng(C2)+45,c) + 
SenNoise(Right,t) > Sl] 

3 c,x [Initiallyp(Boundary(c,x)) A (5.8) 
b't[6000<t< 8000 + 

Fsen(LOC(t),Bng(C2)1C5,c) + 
SenNoise(Left,t) > 6213. 

Finally, we require some values for the VelNoise and 
RotNoise functions (see Proposition 3.3). 

VelNoise( 1000) = 9 - V 

RotNoise(4000) - 
Bng(C2) - Bng(C1) _ w 

1000 

VelNoise(6000) =* - V 

6% 

(5.10) 

(5.11) 

Proposition 5.12. 
CIRC[N ; Happens] A 

CIRC[E ; Initiates, Terminates, Releases] A 

M~AM~ABI=Y!ACOMP[!I’] 
Proof. See full paper q 
Proposition 5.12 asserts that M2 is indeed an explanation 
of Y. But as it stands, it’s not very useful as a map of the 
world. To extract a useful representation, we need to exploit 
the known bounds on the noise terms. We can then pick 
out useful consequences of M2, and discard unwanted junk. 
For example, from (B7) we have the following consequence 
of M2. 

3 c,x [Initiallyp(Boundary(c,x)) A 

V p [On(p,C2) + 
62 - E, I Fsen(p,Bng(C2)-45,c) 5 62 + Q]] 

Concluding Remarks 
While the usefulness of logic in the study of high-level 
cognitive skills is widely accepted, it’s natural to question 
the need for a logical account of low-level perceptual tasks. 
But, as many contemporary cognitive scientists agree, there 
is no clean separation between cognitive and motor- 
perceptual systems in an embodied agent. If they’re right, 
then a logical approach to common sense reasoning can 
only succeed if logic permeates all levels of the system. 
Two key features of the explanations supplied by the 
foregoing abductive account are determining fluents (noise 
terms) and uncertain boundaries. Noise terms eliminate the 
need for consistency-based abduction, while uncertain 
boundaries enable a whole set of possible configurations of 
objects to be captured in a single explanation. 
The question of robot control is outside the scope of this 
paper. But it’s assumed that the robot has some form of 
exploration strategy for gathering sufficient sensor data to 
construct a map. Work in progress takes a logic 
programming approach to implementation. (The 
formalisation of the present paper isn’t intended to be used 
directly.) The use of abductively acquired maps for 
navigation is also under investigation. 
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