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Abstract 

This paper describes an adaptive model-based di- 
agnostic mechanism. Although model-based sys- 
tems are more robust than heuristic-based expert 
systems, they generally require more computation 
time. Time consumption can be significantly re- 
duced by using a hierarchical model scheme, which 
presents views of the device at several different 
levels of detail. We argue that in order to em- 
ploy hierarchical models effectively, it is necessary 
to make economically rational choices concern- 
ing the trade-off between the cost of a diagnosis 
and its precision. The mechanism presented here 
makes these choices using a model diagnosabiliiy 
criterion which estimates how much information 
could be gained by using a candidate model. It 
takes into account several important parameters, 
including the level of diagnosis precision required 
by the user, the computational resources available, 
the cost of observations, and the phase of the di- 
agnosis. Experimental results demonstrate the ef- 
fectiveness of the proposed mechanism. 

1 Introduction 
Model-based diagnosis is an approach that uses a be- 
havioral specification of a device [Davis 1984; de Kleer 
and Williams 1987; Genesereth 1984; Reiter 19871. Al- 
though model-based systems are more robust than 
heuristic-based expert systems, they require more com- 
putation time. In general, the computational complex- 
ity of model-based diagnosis grows rapidly with the 
complexity of the device model. This paper proposes 
an efficient diagnostic mechanism using a hierarchical 
model scheme. 

Other researchers have investigated several ap- 
proaches for model-based device diagnosis. One suc- 
cessful approach is to use probabilistic information, 
e.g., the minimum entropy technique (GDE [de Kleer 
and Williams 19871, Sherlock [de Kleer and Williams 
19891) or the focusing technique [de Kleer 19911. How- 
ever, in order to deal with large scale problems, it is 
important to use not only those techniques but also a 

hierarchical model scheme (XDE [Hamscher 19901). A 
hierarchical model scheme can reason about the target 
device at multiple levels of abstraction: early in the 
diagnosis, an abstract level model can be used to elim- 
inate parts of the device from consideration, while later 
a more detailed model can be used. Since diagnostic 
computation at more detailed levels is generally more 
complex and expensive, the selection of an appropri- 
ate level involves making trade-offs between diagnosis 
cost and diagnosis precision. In order to solve this 
problem, XDE uses a simple heuristic algorithm that 
tries to keep the level of the model as high as possible. 
This may not always be the most efficient strategy, as 
shown in the empirical comparison with this paper’s 
more adaptive mechanism. 

Consider as an example the problem of diagnosing an 
electronic device composed of several boards, each of 
which is composed of several chips. Sometimes a field 
service engineer may only want to know which board 
to replace, while at other times the faulty chip must 
be pinpointed. Diagnostic systems should be flexible 
enough to adapt to the required diagnosis precision. 

Diagnostic systems should also minimize the total 
diagnosis cost, which we measure here in terms of time 
as the sum of the observation cost and the computation 
cost. The observation cost depends on the instruments 
being used. For example, the manual method of using 
a logic analyzer to capture a digital signal from a de- 
vice is expensive, whereas an electron-beam tester can 
easily observe a signal anywhere within an MI chip. 
In the manual case the number of observations taken 
will greatly affect the total diagnosis cost, while in the 
latter case the total cost will mainly be determined 
by the computation cost. Thus a diagnostic system 
should respond to both the observation cost and the 
computation cost. 

This paper presents a diagnosis mechanism that 
takes into account four parameters: the phase of di- 
agnosis, the computational environment, the cost of 
observing the target device, and the required diagno- 
sis precision. Section 2 gives an illustrative example 
of a hierarchical model, and shows how information 
gain can be measured at various levels. Section 3 pro- 
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poses a model diagnosability criterion for estimating 
how much information could be gained from the vari- 
ous models. Section 4 proposes an adaptive diagnosis 
algorithm based on that criterion. Section 5 concludes 
with suggestions for several generalizations and exten- 
sions of the algorithm. 

2 iagnosis with ierarchical Models 
In most conventional hierarchical model-based ap- 
proaches [Davis 1984; Hamscher 19901, the struc- 
ture of a device is represented both as a phys- 
ical hierarchy and as a logical (functional) hier- 
ar thy . The required diagnosis precision is usu- 
ally represented as a level in the physical hierar- 
chy. Taking the example of the device shown in 
Fig. 2-1, if the required diagnosis precision is the chip 
level, then a diagnostic system tries to find the faulty 
chip(s) among the three chips Cl, C’s, and Cs. 

Board level 

Chip level - 

Gate level --II G12 G13 G14 Gal G22 G23 G24 G31632 G33 G34 

Fig. 2-1 Hierarchical structure 

In general, physical hierarchies and logical hierar- 
chies have different structures [Davis 19841. To sim- 
plify discussion, this paper assumes that they have the 
same structure, and also assumes that there is only a 
single fault in the target device. However, the proposed 
techniques can easily be extended to remove these as- 
sumptions. 

Consider the hierarchical model scheme shown in 
Fig. 2-2. A full adder (a) is composed of five subcom- 
ponents, and an g-bit ripple carry adder (b) comprises 
eight full adders. 

(a) Full Adder 

(b) &bit Ripple Carry Adder 

Fig. 2-2 Hierarchical Model Scheme 

There are 256 distinct models for an &bit ripple carry 
adder; of the three shown in Fig. 2-3, model X is the 
most abstract, model Z is the most detailed, and model 
Y lies between the two. In general, diagnosis from a 
more detailed model is more expensive, but it is also 
more specific. The selection of an appropriate level for 
a given diagnostic situation should take into account 
how much information can be gained at each differ- 
ent level of model detail. The next section presents a 
method of estimating this information gain. 

Model Y 

Model Z 

Fig. 2-3 Example 

2.1 iagnosis Precision and Entropy 
Several existing systems [de Kleer and Williams 1987; 
de Kleer and Williams 1989; Hamscher 1990; Koseki et 
al. 19901 use the entropy of a set of suspected com- 
ponents to estimate the expected information needed 
to complete a diagnosis. However, the expected in- 
formation generally depends on the required diagnosis 
precision, as illustrated by the faulty 2-bit ripple carry 
adder shown in Fig. 2-4. Changes of diagnostic status 
are shown at two different levels: (a) the function-level, 
and (b) the gate-level. The suspected components are 
shown hatched; white components are no longer sus- 
pected. The fault probability P(C) for each suspected 
component C is also shown. The figure gives the ini- 
tial diagnostic status, and the status after each of two 
different sets of observations, A and B. 

lnltlal State 

P(Fl)=P( F2)=0.5 

P( F2)=1 .O P( F1)=0.33 P( F2)=0.67 

(a) Function Level 

initial State 

P(Oij)=O.l (id 12 j=l,2,3,4,5) 

P(G2j)=O.25 (j=l,3,4,5) 

(b) Gate Level 

Fig. 2-4 Chauges of Diagnostic Status 

Nakakuki, Koseki, and Tanaka 565 



Fig. 2-4(a) illustrates the case where the required 
precision is the function-level. If we get observation 
A, showing that Fr is normal, then the diagnosis is 
over. But even if we get observation B, both Fi and 
F2 are still suspected. At this level, observation A 
seems to be more informative than observation B. But 
in Fig. 2-4(b), h w ere the required precision is the gate- 
level, observation A reduces the number of suspected 
components to four, whereas observation B reduces it 
to three. At this level observation B is more informa- 
tive than A. This contrast illustrates the importance 
of taking into account the desired diagnosis precision 
when measuring the information gain. 

In order to measure the information gain according 
to the given precision, we calculate the entropy for each 
level in the physical hierarchy. For instance, in the 
above example the entropy for the function-level (EF) 
and for the gate-level ( EG) are defined as follows, and 
are expressed in terms of bits. 

EF = - c P(Fi) log P(Fi) 
i 

EG = -xrP(G;j)logP(Gij) 
i j 

Fig. 2-5 summarizes the reduction of entropy achieved 
by the observations, in both levels of the above exam- 
ple. 

1:o Entropy 0.0 
1 

Obs. A * 1 .OO --* 0.00 

Obs. B * i 1 .oo -+ 0.92 

(a) Function Level Entropy EF 

(b) Gate Level Entropy EG 
Fig. 2-5 Changes of Entropy 

The entropy at a given level is regarded as the re- 
maining information required to complete a diagnosis 
at that level of precision; when it has been reduced 
to zero no further information from observations is re- 
quired. The algorithm proposed here chooses the ap 
propriate figure for entropy according to the level of 
precision required. For example, if the required preci- 
sion is the function-level, it tries to reduce EF, whereas 
if gate-level precision is required, it will use the gate- 
level entropy, EG. 

3 Model Diagnosability Criterion 
This section introduces a model diagnosability crite- 
rion that provides an estimate (in terms of entropy) of 
the most detailed diagnosis that is achievable using a 
given model. 

Consider the three models for a Zbit ripple carry 
adder shown in Fig. 3-l. Assume that the required di- 
agnosis precision is the gate-level and that each of the 
ten gates, Gij (i = 1,2; j = 1,2,3,4,5), has the same 
fault probability of 0.1. (Thus under the single fault as- 
sumption the probability failure for each function-level 
component, F;, is 0.5.) This section works through the 
calculation of the minimal entropy achievable by mod- 
els A, B and C. 

Model A 

ww 

Model B 

GllGw G21G22 1 

Model C 

Fig. 3-l Models for a 2-bit Adder 

Using model A, if enough observations are given, it is 
possible to find a faulty function (Fl or F2), but the 
faulty gate in the function can never be pinpointed. 
If, for instance, the faulty component is Gli, the sys- 
tem can only conclude that the faulty component is 
Gri, G12, Gls, G14, or G15 with probability 0.2 each. 
With model A the gate-level entropy can never be re- 
duced below 5 . (-0.2logO.2) = 2.32. No matter 
how many further observations are given, the system 
still cannot obtain the additional 2.32 bits information 
needed. 

Using model B the system can (given enough obser- 
vations) find the faulty gate provided it is one of the 
five gates, G2j (j = 1,2,3,4,5). If not, the entropy can 
not be reduced to less than 5 . (-0.21ogO.2) = 2.32. 
Thus the expected lower bound for the entropy reduc- 
tion is: 

0.5 - 2.32 + 0.5 - 0 = 1.16 

Using model C, the faulty gate can always be found 
(given enough observations), so the expected lower 
bound for the entropy reduction is 0. 

As an estimate of the completeness of the diagnosis 
achievable by a model, we define the model diagnos- 
ability D(M) for a model M. The maximum value 
of 1.0 indicates that complete diagnosis always achiev- 
able. 

D(M) = Ecu;- E~ow 
cur 

Here, Ecu, is the current entropy and El,, is the ex- 
pected lower bound for the entropy. The current en- 
tropy expresses the expected information needed to 
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complete a diagnosis. The numerator (E,,, - EJ,,) in- 
dicates how much information is expected to be gained 
by using model M. 

In the example above, current entropy is 10 . ( - 
0.1 log 0.1) = 3.32 at the initial stage of a diagnosis 
(Fig. 3-2(a)). Therefore, the D(M) for each model is 
calculated as follows: 

D( modelA) = 
3.32 - 2.32 = o 3. 

3.32 
. 

D( modeli?) = 3*3:;l’16 = 0.65 
. 

D(modelC) = 3’3~~~*oo = 1.00 
. 

Fig. 3-2(b) summarizes these results. It shows that 
a diagnosis with model A can gain at most 30% of 
necessary information, but model C is powerful enough 
to gain all the necessary information. 

GllGi2 P 

GmG14Gi5 G23G24G25 
(4 

3. 

Model A 
Model B 
Model C 

03 
Fig. 3-2 Initial Stage 

Next assume that the set of suspected components 
has been narrowed down by some observations to those 
hatched in Fig. 3-3(a). Then the values for D(M) 
change to those shown in Fig. 3-3(b). Now no infor- 
mation can be gained if model A is used, but model 
B and C have the ability to gain the all information 
needed to pinpoint a faulty gate. 

GllG12 ? G21 Ga 

GI~GI~GIS Ga Ga G2s 
(a) 

2. 0 
D(M) 

Model A 0.00 
Model B 1 .oo 
Model C 1 .oo 

(b) 
Fig. 3-3 Later Stage 

4 Adaptive Diagnosis Mechanism 

The previous section introduced the model diagnos- 
ability criterion; this section presents an adaptive di- 
agnostic algorithm called HIMA that uses that crite- 
rion to select an appropriate model at each stage of a 
diagnosis. 

Let D(M) be the diagnosability for model M, and let 
C be the average cost of an observation (in terms of the 
time required to make it). The diagnostic process con- 
sists of several observation/computation cycles (also 
called phases), so T(M) + C is the expected cost for 
a cycle, where T(M) is the expected time to calculate 
the suspects (given an observation) under model M. 
We assume that T(M) can be estimated empirically or 
analytically, and that C is a model-independent con- 
stant. To choose an appropriate model, we evaluate 
each model by using the following criterion: 

E(M) = DW) 
T(M) + c 

At each diagnostic cycle the model with the greatest 
value for E(M) is selected as the best one. 

This diagnostic mechanism adapts its choice of level 
according to several factors: the phase of the diagnosis, 
the given diagnosis precision, and the costs of observa- 
tion and computation. 

The remainder of this section is a worked example 
illustrating the algorithm’s behavior under two differ- 
ent economic situations: first where the cost of obser- 
vations is very low relative to computation time, and 
then when it is relatively high. 

Returning to the three models of &bit ripple carry 
adder of Fig. 2-3, assume that the required diagno- 
sis precision is the gate-level and that the expected 
computation time for each model is as follows. (These 
values are derived empirically using our diagnostic en- 
gine [Koseki et al. 19901.) 

T(modeZ X) = 0.30 (set) 

T(model Y) = 0.39 (set) 

T(mode1 2) = 1.22 (see) 

First consider the case where the cost of observations 
is relatively low, i.e. C << T(M) for each model M. 
Then E(M) can be approximated as: 
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(a) Initial Stage 

(b) Later Stage 

Fig. 4-l Examples of Diagnostic Stages 

IInitial stage 1 Fig. 4-l(a) shows the initial stage of 
the diagnosis, when all gates are suspected with the 
same probability (l/40). At this stage model X is se- 
lected because it has the largest value for E(M), as 
shown in Table 4-l(a). Model X can gain about 56% 
of the necessary information at a low cost. 

(Laterstage Suppose that after some observe 
tions, the diagnosis has proceeded to the state shown 
in Fig. 4-l(b). The values for E(M) in Table 4--l(b) 
show that model Y should now be selected. Model X 
can gain at most only 30% of necessary information, 
and model 2 is relatively costly. 

Table 4-l E(M) for each model (C<< T(M)) 

(a) Initial Stage 

I z I 1.00 1 1.22 1 0.82 1 

(b) Later Stage 

Model Diagnosability Cost E(M) 

X 0.30 0.30 1.00 

Y 0.65 0.39 pq 

z 1.00 1.22 0.82 

This example shows the HIMA algorithm’s ability 
to change the level of the model appropriately at each 
stage. 

Now consider the opposite case, where the cost of 
observations is high relative to the computation cost, 
i.e. T(M) << C for each model M. In this case the 
diagnosis cost is barely affected by the observation cost 
C. For example, if C = 100.0 set in the above exam- 
ple, then the diagnosis cost (the sum of the observation 
cost and the computation cost) for models X, Y and Z 
are 100.30, 100.39 and 101.22, respectively. Table 4-2 
shows that model Z will be selected in both stages of 

the diagnosis. Intuitively this shows that when obser- 
vations are expensive, it is worth maintaining a very 
detailed model at all times, whereas if observations are 
cheap, this detail is needed only in the later stages. 

Table 4-2 E(M) for each model (T(M)< C) 

(a) Initial Stage 

L 

Model 1 Diagnosability 1 Cost I E(M) I 

x I 0.56 1 100.3 1 0.0056 1 

Y 0.62 100.4 0.0061 

Z 1.00 101.2 (a.oo991 

(b) Later Stage 

Diagnosability Cost 1 Jww 

This contrast illustrates the HIMA algorithm’s abil- 
ity to adapt to the dynamic economics of the obser- 
vation and computation. Computation cost obviously 
depends on the computing machinery available; a l- 
MIPS computer will require far more time than a lOO- 
MIPS machine, so it is important that this factor is 
specified as an input to the algorithm. 

Finally, suppose that the required diagnosis preci- 
sion were changed from the gate level to the function- 
level in each of the two examples above. All of the 
three models have enough diagnosability, so model X 
would be selected because it has the least expected 
cost among the three. This illustrates the adaptabil- 
ity of the HIMA algorithm to the required diagnosis 
precision. 

4.1 Algorithm 
In general, there are huge number of possible models 
for a given hierarchical model scheme and target de- 
vice, and this number grows exponentially with the 
number of components in the device. Since it is im- 
practicable to test all possible models, we aim to reduce 
the number of models considered. The following pseu- 
docode for the HIMA algorithm introduces a heuristic 
search mechanism to achieve this end. 

M c Most abstract level model; 
while {there is an expandable component ci in M 

and E( expand(M, ci)) > E(M)} 
M + expand(M, ci); 

Expandable components are those that have mod- 
els at a more detailed level, and expand(M, c;) is 
a model obtained from model M by replacing com- 
ponent cd with the components that comprise ci at 
the next level below. For example, in Fig. 2-3, 
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model U=expand (Model X, f7) (f7 is the seventh 
full-adder from the left). No component of model Z is 
expandable. The algorithm requires time linearly pro- 
portional to the number of components in the model 
scheme. 

4.2 Experimental Results 
We evaluated the performance of the HIMA algorithm 
on a 16bit adder represented by a three-level hierar- 
chical model scheme. The number of components at 
successive levels was 2, 32 and 160. The required di- 
agnosis precision was set to the most detailed level. 

The performance of the HIMA algorithm was com- 
pared to the two obvious “strawman” algorithms that 
could be used in two extremely different diagnostic en- 
vironments. Results show that the HIMA algorithm 
outperforms both strawman algorithms, even under 
the conditions most favorable to each. 

The first strawman, FIX, uses a fixed model 
throughout the diagnostic process, determined by the 
required precision (so in this case, the most detailed 
level model is always used). The other strawman al- 
gorithm, AHAP, keeps the level of the model to use as 
high as possible: it changes to a more detailed level 
only if there is no possibility of gaining information 
using the current model. 

Single faults were generated randomly, and the aver- 
age cost (the sum of computation cost and observation 
cost) of pinpointing the faulty component was mea- 
sured. The experiments were performed with three 
different expected observation costs (lmsec, lsec and 
100sec). The results shown in Table 4-3 show that the 
HIMA algorithm performs best in all cases. 

Table 463 Average Diagnosis Cost (set) 

Algorithm Expected Observation Cost 

3 Discussion 
The technique described in this paper adapts to several 
factors: the required precision, the given computation 
power, the observation cost, and the phase of diagnosis. 
Although some simplifying assumptions were made to 
the diagnosis problem, the proposed mechanism can 
naturally be extended to more general cases, which 
have natural justifications in the real-world diagnosis 
tasks. First, the diagnosis precision need not be re- 
stricted to a fixed level in the physical hierarchy. For 
example, according to the availability of spare parts, 
chip-level precision may be required for some parts of 

the target device, and board-level precision may be 
required for others. Second, the physical hierarchy 
and the logical hierarchy need not be identical. Third, 
whereas we assumed that the observation cost is model 
independent, this need not be the case: the output sig- 
nal of a whole board may be cheaper to observe than 
the output signal of an intermediate chip. 

The HIMA algorithm can be extended in several 
other ways. First, in some domains it may be prefer- 
able to modify the model diagnosability criterion, be 
cause it does not estimate the number of required ob- 
servations. For example, even if D(M) = 0.9 for a 
certain model M, a diagnosis with the model may re- 
quire dozens of observations to gain this 90% of the 
necessary information, so the criterion does not always 
estimate the diagnosability exactly. Second, the algo- 
rithm requires estimates of the computation cost and 
the fault probability for each component. Inductive 
learning techniques [Nakakuki et al. 19901 or analyti- 
cal methods can provide this. 
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