
Steven L. Lytinen
Artificial Intelligence Laboratory

The University of Michigan
Ann Arbor, MI 48109

e-mail: jeff@caen.engin.umich.edu

This paper describes ULINK, a program designed to
understand ungrammatical input. While most previ-
ous work in the field has relied on syntactic tech-
niques or sublanguage analysis to parse grammatical
errors, ULINK uses a semantics-driven algorithm to
process such input. The paper gives a brief overview
of LINK, the unification-based system upon which
ULINK is built; special attention is given to those as-
pects of LINK which allow ULINK to use semantics
to process ill-formed input. The details of ULINK’s
algorithm are then discussed by considering two ex-
amples. The paper concludes with a discussion of
related research and problems which remain to be
solved.

nero ctio
Traditional Natural Language Processing (NLP) systems
have a difficult time understanding ungrammatical sen-
tences. These systems have separate modules to analyze
the syntax and semantics of a sentence (Winograd 1972,
Hirst 1983, Shieber 1986). Typically they first parse a
sentence (or parts of a sentence) based on syntax and
then present the semantic module with the various pos-
sible parses. The semantic module then determines which
of the possible parses makes sense, given its knowledge
of the words in the sentence and the syntactic constituents
determined by the parser.

Ungrammatical input causes two problems for tradi-
tional systems. First, the syntax module usually contains
the ‘proper’ syntax of a language, and hence is unable
to parse ungrammatical input in the first place. Second,
for some kinds of text, such as terse text in which many
words are left out of a sentence, there are many possible
syntactic interpretations of a sentence, only a few of which
make semantic sense. Even if the parser overcomes the
first problem and can parse ungrammatical input, the sec-
ond problem leads to inefficient analysis, since the system
must consider many interpretations of each sentence.

A system called ULINK was designed in an attempt to

overcome these two problems. ULINK’s grammar con-
tains only the proper syntax of English, but in the face
of grammatical errors ULINK attempts to relax the syn-
tactic constraints in ways which make semantic sense. At
the same time, ULINK uses semantic information to con-
sider only semantically reasonable parses of the sentence,
leading to efficient parsing of terse text.

ULINK is based on LINK, an integrated unification-
based NLP system developed by Steven Lytinen (Lytinen
and Roberts 1989, Lytinen 1990). ULINK’s domain is
a set of automobile stalling cases taken from a database
of car problems. The cases are one-line problem descrip-
tions which were entered into the database by mechanics
in terse, ill-formed statements.

LINK itself cannot parse ungrammatical input because,
like traditional systems, it is syntax-driven and cannot
parse any sentence not acceptable to its grammar. Unlike
traditional systems, however, syntactic and semantic pro-
cessing in LINK are integrated in one module, thus making
semantic information available during parsing. ULINK
uses this semantic information to recover from grammati-
cal errors and continue the parse.

As we will see later on, ULINK must perform two func-
tions in order to parse ungrammatical input. It must be able
to find semantic connections between the sub-constituents
already built by the parser at the time that an error is de-
tected; and it must be able to locate grammar rules based
on the semantic connections the rules make. If ULINK
can find both a semantic connection between two sub-
constituents and a grammar rule to make that connection,
then ULINK can apply the rule as if the correct syntactic
constituents were present. In order to describe ULINK in
more detail, a few more words must be said about LINK.

LINK
LINK encodes all syntactic, semantic, and pragmatic
knowledge in unification constraint rules. Knowledge
is given to the system in one of three ways: as word
definitions in the lexicon, as grammar rules, and as
pragmatic definitions of concepts in a semantic net.
In all three cases, the knowledge is represented as a

KIRTNER & LYTINEN 137

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

S:
(1) =NP
(2) =VP
(head) = (2 head)
(head rep object) = (1 head rep)

Figure 1: Grammar rule and its associated DAG

Directed Acyclic Graph (DAG).
Consider the S rule in Figure 1. The rule specifies a set

of constraints which any node labelled S must have. The
constraints consist of a path, or a sequence of arcs with the
appropriate labels star&g from the-node in question; and
a value, which is another node to be found at the end of
the path. The values of constraints specify either the label
of the node found at the end of the path, as in equations 1
and 2, or a unification with another path, as in equations
3and4.

The S rule encodes the following information about sen-
tences. Equations 1 and 2 specify that sentences are made
up of a noun phrase (NP) and a verb phrase (VP). Equa-
tion 3 specifies that the HEAD path of the sentence is to
be unified with the HEAD path of the VP. It is via HEAD
links that information gathered at lower levels of the parse
is propagated up to higher levels; after unifying the two
HEAD paths, any information that the VP has gathered
will now be accessible to the S node. Equation 4 maps a
syntactic constituent to its semantic role. In this case, the
semantic representation of the NP becomes the object of
the sentence. It is always the case that semantic informa-
tion is stored under the (HEAD REP) path of a DAG.

Grammar rules in LINK are indexed by their sub-
constituents. Thus the S rule will be indexed under (NP
VP), and the rule will only be accessible to LINK once
the NP and VP constituents have been built.

In order to understand the changes ULINK makes to
LINK to allow it to parse ungrammatical input, it will

138 SYNTAX AND SEMANTICS

help to work through a sample parse. The sentence we
will parse is ‘The engine stalls.’ Before working through
the example we need to define the grammar rules for NP’s,
VP’s, and determiners, as well as the words in the sen-
tence.

s:
((1) =NP

(2) =VP
(head) = (2 head)
(head rep object) = (1 head rep))

NP:
((1) = DET

(2) =N
(head) = (2 head)
(head common) = (common))

VP: ((1) =v
(head) = (1 head))

Lexical entries:
The: (DET (head rep ref) = definite)
Stalls: (V (head rep) = *stall*)
Engine: (N (head rep) = *engine*

(head connnon) = common)

Pragmatic information:
(DEFINE-SC engine-action

is-a (action stall-condition)
formulae (((OBJECT) = *engine*)))

(DEFINE-SC *stall*
is-a (engine-action))

The notation is mostly straightforward. ‘*stall*’ and ‘*en-
gine*’ refer to the meanings of the words ‘stall and ‘en-
gine,’ respectively; in general ‘*thing*’ refers to the mean-
ing of ‘thing.’ Pragmatic knowledge is input declara-
tively and is built into a semantic net. In this example
a *stall* is defined to be an ENGINE-ACTION, and un-
der ENGINE-ACTIONS we declare that the object of an
ENGINE-ACTION is a *engine*. Pragmatic information
is inserted into the DAG at the time a word is first read
by the parser.

When parsing ‘The engine stalls,’ the parser first reads
the word ‘The’ and builds a DAG labelled DET using
information defined in the dictionary entry for the word
‘The’. Next the parser reads the noun ‘engine’ and builds
a DAG labelled N. The sub-constituents of the NP rule
have now been built, so the parser applies the NP rule to
the DET and N DAGs and builds a DAG labelled NP.

The parser then reads the word ‘stalls’ and builds a DAG
labelled V; the V DAG includes the semantic information
defined in the dictionary and the pragmatic information
defined in the semantic net. This means that when the V
DAG is built, the (HEAD REP) path of the DAG contains
two pieces of information: that the representation of the
verb is *stall*, and that the object of the verb is *engine*.
After the DAG labelled V is built, LINK builds a DAG
labelled VP from the V DAG.

Once the VP DAG is built, the NP and VP DAGs are

used to index the S rule. The S rule will apply success-
fully. Equation 4 is of particular interest here. It stipulates
that in order to build an S node, the object of the VP must
unify with the NP. In this case, both the object of the VP
and the NP have the label *engine*, so they unify and the
constraint is satisfied. Since LINK’s goal is to build an S
DAG which spans all the words of the input, LINK stops
parsing. The meaning of the sentence is stored under the
(HEAD REP) path of the S DAG. It looks like this:
stall

Object : *engine*
ref : definite

and
Let us next consider the problem of parsing ungrammat-
ical input. We will again work through a short example,
but this time LINK will fail to parse the input. After
demonstrating why LINK fails, it will be easy to explain
the extensions ULINK makes in order to parse the same
input.

The input we will try to parse is ‘engine stalls.’ LINK
first reads the word “engine” and builds a DAG labelled N
with the definition from “engine”. Since no determiner is
present, LINK cannot build a larger constituent from the
noun, and so continues on to the verb. As before, LINK
builds a V node and then a VP node, again attaching the
information that the object of the verb is *engine*. Now
LINK can go no further: it has built N and VP DAGs, but
no rule is indexed under these constituents. In particular,
the S rule requires an NP label, and so cannot be indexed.
Thus LINK fails to parse the sentence.

It is clear, however, that the semantic information
needed to combine the two constituents is readily avail-
able. The N has a semantic representation (HEAD REP)
= *engine*, and the VP knows that its (HEAD REP OB-
JECT) = *engine*. It is reasonable to assume that there
may be a valid connection between the N and the object
of the verb. The problem is that we have no way of find-
ing a rule to make that connection, because the rules are
indexed only by syntactic constituents.

ULINK makes two extensions to LINK to allow it to use
semantic information to recover from grammatical errors.
First, ULINK searches the semantic information available
in the DAGs already built at the time an error is detected,
trying to find a possible semantic connection between two
constituents; and second, it cross-references the grammar
rules according to the semantic connections the rule can
make, so that if semantic connection between two con-
stituents is found, we can find a rule to apply to make that
connection.

Consider the ‘engine stalls’ example. When the S rule
was entered into the grammar, ULINK cross-referenced
the rule by the OBJECT slot, since the S rule uses the
OBJECT slot to make a semantic connection. When the
error is encountered during parsing, ULINK discovers that
there is a semantic connection in the OBJECT slot between
the noun ‘engine’ and the VP ‘stalls.’ That is, the noun
dag has a (HEAD REP) equal to *engine* and the VP has

a (HEAD REP OBJECT) equal to *engine*. Since the
semantic connection occurs in the OBJECT slot, ULINK
looks for rules that make a semantic connection with an
OBJECT. As mentioned before, the S rule makes this con-
nection. Thus ULINK finds both the semantic connection
and the rule to make that connection, so the S rule is ap-
plied as if the Np DAG had already been built.

he algorith
The pseudo-code below describes the basic operations of
IJLlNK. The three highlighted steps in IlLINK’s process-
ing are described in more detail below. There are only two
things to note here. The first is that ULINK’s extensions
are used only when syntax alone does not enable the parser
to find any more grammar rules to apply; in this sense
grammatical errors are thought of as exceptions. Second,
whereas in LINK a parsing failure occurs when a gram-
matical error is detected, in ULINK a failure occurs when
an error is detected and no more semantic connections can
be found between the DAGs already built.
At system start-up:
<I> Cross-reference the rules by their

syntactic constituents and by the
semantic connections the rules make

Loop until success or failure:
Try to find a rule through normal LIEJ#
processing:
If rule is found Then

Apply the rule;
Else /* parse ungrammatical input */

While (no new DAG has been built)
<2> Find a semantic connection

(independent of the grammar)
between two adjacent DAGs;
Find a rule to apply to make
that connection;

<3> If (constituents required by
the rule are 'close enough'
to the constituents of the
DAGs) Then

Apply the rule build a new
DAG;

Cross-referencing the rules
In ULINK, grammar rules are indexed not only by syn-
tactic constituents, but also via the semantic connections
the rules make. ULINK makes the assumption that any
rule with a constraint involving a (HEAD REP) path is
a candidate rule for making semantic connections. This
is reasonable, since the (HEAD REP) path stores the se-
mantic representation of each constituent that is built. In
the S rule above, for example, the fact that the constraint
‘(HEAD REP OBJECT) = (1 HEAD REP)’ is in the rule
qualifies the S rule to be cross-listed by OBJECT as well
as by the traditional syntactic indexing based on the sub-
constituents (NP VP). As another example, the VP rule
below would be cross-listed by the MODIFIES slot:

KIRTNER & LYTINEN 139

VP:
((1) =VP

(21 = Am
(head) = (1 head)
(head rep) = (2 head modifies))

Finding a connection between constituents
The algorithm to find a semantic connection begins by
looking for a connection among DAGs covering the largest
number of input words, and then continues searching
shorter and shorter components until either a connection
is found or no more DAGs remain to be searched. It only
searches for connections between two adjacent DAGs. The
algorithm examines the (HEAD REP) links of the two
DAGs, since that is where the semantic information is
stored. A connection is found whenever two DAGs share
the same label (as in the example of engine and stall
above), or whenever one DAG label is an instance of a
class represented by the second DAG label (i.e. DAGl
IS-A DAG2).

Deciding whether or not to apply a rule
Suppose that a semantic connection between two DAGs
has been found, and a rule has been found that makes the
appropriate connection. It does not necessarily follow that
the rule should be applied. There must be some determina-
tion that the syntactic constituents of the DAGs are “close
enough” to the syntactic constituents required by the rule
to warrant applying the rule to the DAGs. In the ‘engine
stalls’ example, the constituents of the DAGs were N and
VP, and the rule required an NP and VP. It is reasonable
to assume that an N is close enough to an NP to apply the
rule as if an NP had actually been built. Indeed, the algo-
rithm actually changes the label of the DAG from N to NP
before applying the rule. ULINK currently uses a global
list of constituents considered to be close enough to other
constituents to warrant applying rules to one constituent
in place of the other.

A second example
Consider the sentence ‘Engine stalls intermittent.’ This
sentence is ungrammatical because there is no determiner
in the initial noun phrase, and because an adjective, ‘in-
termittent,’ is modifying the verb ‘stalls.’ Assume that
we update our grammar rules and dictionary as follows.
Figure 2 describes how the VP rule works by showing
the results of unification under normal processing - that
is, assuming the sub-constituents VP and ADV had been
built.

Grammar rule:
VP:

((1) =VP
(2) = ADV
(head) = (1 head)
(head rep) = (2 head modifies))

I

fies

c frequency I? frequency

Figure 2: Unifying VP and ADV

Dictionary definition:
intermittent:
WJ
(head rep) = ENGINE-ACTION
(head xnodifies) = (head rep)
(head rep frequency) = *intermittent*)

Let us follow ULINK’s parse of the sentence ‘En-
gine stalls intermittent.’ At the time an error is de-
tected, ULINK will have built both a VP DAG from the
word ‘stall’ as described in the previous example, and
a DAG labelled ADJ for the word ‘intermittent.’ The
system will try to find a semantic connection between
these two DAGs, and will find one because in the dic-
tionary definition of the word ‘intermittent’ the unification
constraint ‘(head rep) = ENGINE-ACTION’ declares that
‘intermittent’ can modify an ENGINE-ACTION. Since a
stall is an ENGINE-ACTION, as defined in the pragmatic
knowledge given in the original example, then we have
a connection between ‘stall’ and ‘intermittent’ (i.e. that
a ‘stall’ is an ENGINE-ACTION and that ‘intermittent’
modifies ENGINE-ACTION’s by declaring that their fre-
quency is *intermittent*). This connection is made in the
MODIFIES slot of the DAG labelled ADJ. Since ULINK
has cross-referenced the grammar rule (VP ADV) by the
MODIFIES slot, we can find a grammar rule to make the
semantic connection we have found. Next ULINK deter-
mines that the ADJ label in the DAG is close enough to the
ADV constraint in the rule to warrant applying the rule, as
described in step three of the ULINK algorithm. Therefore
the syntactic constraint requiring an ADV is relaxed, the
rule is applied, a VP DAG is built, and normal processing
continues. In this case, normal processing will result in
the discovery of a second grammatical error; namely, that
the parser can build an N node for ‘engine’ and a VP node
for ‘stalls intermittent,’ but cannot combine an N and VP

140 SYNTAX AND SEMANTICS

into an S. The handling of this error was described in the
first example of ULINK’s processing, and the result here
is the same. Thus the final result of the parse will be as
follows:

stall
Object : *engine*
frequency: *intermittent*
ref : definite

iscussion of Related Researc
In the past there have been two general approaches to
processing ill-formed text, one which relies on syntactic
parsing techniques and the other which analyzes the input
as a sublanguage. The syntactic techniques can be subdi-
vided into two areas. ‘Ihe first area uses grammar-specific
rules to recover from errors. Weischedel and Sondheimer
called such rules Meta-rules; other systems using this ap
preach include Jensen et al (1983). The second of the
syntactic approaches uses grammar-independent rules that
depend only on the grammar formalism used. Mellish
1989 sketches such a system based on an active chart
parser. In some ways, Mellish’s approach is similar to
ours, in that explicit rules are not used to drive the pro-
cess of matching an ungrammatical input to the system’s
grammar. Wowever, ULINK uses semantic information
to drive this matching process, whereas the approach of
Mellish and others relies exclusively on syntactic features.

Encoding recovery rules as grammar-specific Me&rules
has two potential drawbacks, one concerned with coverage
of errors and the other concerned with efficiency. It may
turn out to be an extremely difficult task to encode every
new ungrammatical construction into a meta-rule. Even
if this can be done for a given database of sentences, it
may be that the rules themselves are not transferable to
another domain, which might contain a different set of
ungrammatical constructions. ULINK escapes the trans-
portability problem because its grammar contains only the
correct grammar of the language, which is much less likely
to change from one domain to another.

ULINK also has a possible processing advantage over
both of the syntactic approaches mentioned above. Sys-
tems that rely on syntactic processing to recover from er-
rors must apply any rule that fits the input. At least for
corpora containing terse text, there are often many differ-
ent syntactic constructions which fit the phrases built at the
time an error is discovered. Usually only one or two of
these constructions makes semantic sense. ULINK is able
to use the semantics of the phrases built so far to point
directly to the rule to use to recover from the error. Thus
ULINK trades off a search for a semantic connection and
an application of one grammar rule with no search for a
connection but the application of many rules. Which of
these approaches is more efficient is an empirical question
that we will be addressing.

The second approach to ungrammaticallity is to treat
the input as a sublanguage. This approach is described in
Kittredge and Lehrberger (1982), Grishman and Kittredge

(1986), and by work that has grown out of the Linguis-
tic String Project at NYU (see for example Sager (1982);
Marsh (1983); and Grishman et a2 (1986)). A sublanguage
is characterized by a restricted domain and by greater syn-

The comparsisons will cover both the efficiency of the
parse and the percentage of errors covered by the two
systems. One interesting possibility is that our approach
will recover from some errors better than the syntactic
approaches, while syntactic methods will work better for
other errors. For example, our approach works well for
terse text, in which many words have been left out and
in which morphological changes that lengthen words are
often ignored. On the other hand, it is not clear how well
our approach will handle sentences with extra words - that
is, garbage - embedded in them. It may be that syntactic
approaches handle this problem better, though the issue is
far from settled. The second direction is to test ULINK
in another domain, both to see how well the system cov-
ers the grammatical errors of that domain, and to see how
long it takes to encode the knowledge of the second do-
main into the representations needed by ULINK. The out-
come of these two efforts will help to determine whether a
semantics-driven approach to ungrammatical input is more
effective than other approaches have been.

References

Grishman, R., Hirschman, L., and Nhan, N. T., (1986) Dis-
covery Procedures for Sublanguage Selectional Patterns:
Initial Experiments. In Computational Linguistics, Vol 12,
No. 3, July-September 1986.

Grishman, R., and Kittredge, R. eds. (1986). Analyzing
Language in Restricted Domains: Sublanguage Descrip-
tion and Processing. Hillsdale, New Jersey:Lawrence Erl-
baum Associates. 1986.

Hirst, G. (1983). Semantic interpretation against ambigu-
ity. PhD Thesis, Brown University, Department of Com-
puter Science, Providence RI, Research Report #CD-83-
25.

Jensen, K., Heirdom, G. E., Miller, L. A. and Ravin, Y.,
(1983). Parse Fitting and Prose Fitting: Getting a Hold on
Ill-Formedness, AJCL Vol 9, Nos 3-4, 1983.

Kittredge, R., and Lehrberger, J. eds. (1982). Sublan-
guage: Studies of Language in Restricted Semantic Do-
mains. Berlin:Walter de Gruyter. 1982.

Lytinen, S. (1990) Robust processing of terse text. In
Proceedings of the 1990 AAAI Symposium on Intelligent
Text-based Systems, Stanford CA, March 1990, pp. 10-14.

Lytinen, S. and Roberts, S. (1989). Lexical acquisition as
a by-product of natural language processing. In Proceed-
ings of the First International Lexical Acquisition Work-
shop, IJCAI-89, Detroit, MI, August 1989.

Marsh, E. (1983) Utilizing domain-specific information for
processing compact text. In Proceedings of the Conference
on Applied Natural Language Processing, Santa Monica,

CA, pp. 99-103.

Marsh, E. (1986) General Semantic Patterns in Different
Sublanguages. In Analyzing Language in Restricted Do-
mains: Sublanguage Description and Processing (Grish-
man and Kittmdge, eds.). Hillsdale, New Jersey:Lawrence
Erlbaum Associates.

Mellish, C. (1989). “Some chart-based techniques for
parsing ill-formed input.” In Proceedings of the 1989 Con-
ference of the Association of Computational Linguistics.
Vancouver, B.C., June 1989.

Shieber, S. (1986). An Introduction to Unification-based
Approaches to Grammar. Center for the Study of Lan-
guage and Information, Menlo Park, CA.

Weischedel, R. M. and Sondheimer, N. D. (1983) Meta-
rules as a Basis for Processing Ill-Formed Input. In Amer-
ican Journal of Computational Linguistics, Vol9, Nos 3-4,
1983.

Winograd, T. (1972). Understanding Natural Language.
New York: Academic Press.

Woods, W. A., Optimal Search Strategies for Speech Un-
derstanding Control. In Artificial Intelligence 18 (3), 1982.

142 SYNTAX AND SEMANTICS

