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This paper describes ULINK, a program designed to 
understand ungrammatical input. While most previ- 
ous work in the field has relied on syntactic tech- 
niques or sublanguage analysis to parse grammatical 
errors, ULINK uses a semantics-driven algorithm to 
process such input. The paper gives a brief overview 
of LINK, the unification-based system upon which 
ULINK is built; special attention is given to those as- 
pects of LINK which allow ULINK to use semantics 
to process ill-formed input. The details of ULINK’s 
algorithm are then discussed by considering two ex- 
amples. The paper concludes with a discussion of 
related research and problems which remain to be 
solved. 

nero ctio 
Traditional Natural Language Processing (NLP) systems 
have a difficult time understanding ungrammatical sen- 
tences. These systems have separate modules to analyze 
the syntax and semantics of a sentence (Winograd 1972, 
Hirst 1983, Shieber 1986). Typically they first parse a 
sentence (or parts of a sentence) based on syntax and 
then present the semantic module with the various pos- 
sible parses. The semantic module then determines which 
of the possible parses makes sense, given its knowledge 
of the words in the sentence and the syntactic constituents 
determined by the parser. 

Ungrammatical input causes two problems for tradi- 
tional systems. First, the syntax module usually contains 
the ‘proper’ syntax of a language, and hence is unable 
to parse ungrammatical input in the first place. Second, 
for some kinds of text, such as terse text in which many 
words are left out of a sentence, there are many possible 
syntactic interpretations of a sentence, only a few of which 
make semantic sense. Even if the parser overcomes the 
first problem and can parse ungrammatical input, the sec- 
ond problem leads to inefficient analysis, since the system 
must consider many interpretations of each sentence. 

A system called ULINK was designed in an attempt to 

overcome these two problems. ULINK’s grammar con- 
tains only the proper syntax of English, but in the face 
of grammatical errors ULINK attempts to relax the syn- 
tactic constraints in ways which make semantic sense. At 
the same time, ULINK uses semantic information to con- 
sider only semantically reasonable parses of the sentence, 
leading to efficient parsing of terse text. 

ULINK is based on LINK, an integrated unification- 
based NLP system developed by Steven Lytinen (Lytinen 
and Roberts 1989, Lytinen 1990). ULINK’s domain is 
a set of automobile stalling cases taken from a database 
of car problems. The cases are one-line problem descrip- 
tions which were entered into the database by mechanics 
in terse, ill-formed statements. 

LINK itself cannot parse ungrammatical input because, 
like traditional systems, it is syntax-driven and cannot 
parse any sentence not acceptable to its grammar. Unlike 
traditional systems, however, syntactic and semantic pro- 
cessing in LINK are integrated in one module, thus making 
semantic information available during parsing. ULINK 
uses this semantic information to recover from grammati- 
cal errors and continue the parse. 

As we will see later on, ULINK must perform two func- 
tions in order to parse ungrammatical input. It must be able 
to find semantic connections between the sub-constituents 
already built by the parser at the time that an error is de- 
tected; and it must be able to locate grammar rules based 
on the semantic connections the rules make. If ULINK 
can find both a semantic connection between two sub- 
constituents and a grammar rule to make that connection, 
then ULINK can apply the rule as if the correct syntactic 
constituents were present. In order to describe ULINK in 
more detail, a few more words must be said about LINK. 

LINK 
LINK encodes all syntactic, semantic, and pragmatic 
knowledge in unification constraint rules. Knowledge 
is given to the system in one of three ways: as word 
definitions in the lexicon, as grammar rules, and as 
pragmatic definitions of concepts in a semantic net. 
In all three cases, the knowledge is represented as a 
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S: 
(1) =NP 
(2) =VP 
(head) = (2 head) 
(head rep object) = (1 head rep) 

Figure 1: Grammar rule and its associated DAG 

Directed Acyclic Graph (DAG). 
Consider the S rule in Figure 1. The rule specifies a set 

of constraints which any node labelled S must have. The 
constraints consist of a path, or a sequence of arcs with the 
appropriate labels star&g from the-node in question; and 
a value, which is another node to be found at the end of 
the path. The values of constraints specify either the label 
of the node found at the end of the path, as in equations 1 
and 2, or a unification with another path, as in equations 
3and4. 

The S rule encodes the following information about sen- 
tences. Equations 1 and 2 specify that sentences are made 
up of a noun phrase (NP) and a verb phrase (VP). Equa- 
tion 3 specifies that the HEAD path of the sentence is to 
be unified with the HEAD path of the VP. It is via HEAD 
links that information gathered at lower levels of the parse 
is propagated up to higher levels; after unifying the two 
HEAD paths, any information that the VP has gathered 
will now be accessible to the S node. Equation 4 maps a 
syntactic constituent to its semantic role. In this case, the 
semantic representation of the NP becomes the object of 
the sentence. It is always the case that semantic informa- 
tion is stored under the (HEAD REP) path of a DAG. 

Grammar rules in LINK are indexed by their sub- 
constituents. Thus the S rule will be indexed under (NP 
VP), and the rule will only be accessible to LINK once 
the NP and VP constituents have been built. 

In order to understand the changes ULINK makes to 
LINK to allow it to parse ungrammatical input, it will 
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help to work through a sample parse. The sentence we 
will parse is ‘The engine stalls.’ Before working through 
the example we need to define the grammar rules for NP’s, 
VP’s, and determiners, as well as the words in the sen- 
tence. 

s: 
((1) =NP 

(2) =VP 
(head) = (2 head) 
(head rep object) = (1 head rep) ) 

NP: 
( (1) = DET 

(2) =N 
(head) = (2 head) 
(head common) = (common)) 

VP: ((1) =v 
(head) = (1 head) ) 

Lexical entries: 
The: (DET (head rep ref) = definite) 
Stalls: (V (head rep) = *stall*) 
Engine: (N (head rep) = *engine* 

(head connnon) = common) 

Pragmatic information: 
(DEFINE-SC engine-action 

is-a (action stall-condition) 
formulae (((OBJECT) = *engine*))) 

(DEFINE-SC *stall* 
is-a (engine-action)) 

The notation is mostly straightforward. ‘*stall*’ and ‘*en- 
gine*’ refer to the meanings of the words ‘stall and ‘en- 
gine,’ respectively; in general ‘*thing*’ refers to the mean- 
ing of ‘thing.’ Pragmatic knowledge is input declara- 
tively and is built into a semantic net. In this example 
a *stall* is defined to be an ENGINE-ACTION, and un- 
der ENGINE-ACTIONS we declare that the object of an 
ENGINE-ACTION is a *engine*. Pragmatic information 
is inserted into the DAG at the time a word is first read 
by the parser. 

When parsing ‘The engine stalls,’ the parser first reads 
the word ‘The’ and builds a DAG labelled DET using 
information defined in the dictionary entry for the word 
‘The’. Next the parser reads the noun ‘engine’ and builds 
a DAG labelled N. The sub-constituents of the NP rule 
have now been built, so the parser applies the NP rule to 
the DET and N DAGs and builds a DAG labelled NP. 

The parser then reads the word ‘stalls’ and builds a DAG 
labelled V; the V DAG includes the semantic information 
defined in the dictionary and the pragmatic information 
defined in the semantic net. This means that when the V 
DAG is built, the (HEAD REP) path of the DAG contains 
two pieces of information: that the representation of the 
verb is *stall*, and that the object of the verb is *engine*. 
After the DAG labelled V is built, LINK builds a DAG 
labelled VP from the V DAG. 

Once the VP DAG is built, the NP and VP DAGs are 



used to index the S rule. The S rule will apply success- 
fully. Equation 4 is of particular interest here. It stipulates 
that in order to build an S node, the object of the VP must 
unify with the NP. In this case, both the object of the VP 
and the NP have the label *engine*, so they unify and the 
constraint is satisfied. Since LINK’s goal is to build an S 
DAG which spans all the words of the input, LINK stops 
parsing. The meaning of the sentence is stored under the 
(HEAD REP) path of the S DAG. It looks like this: 
*stall* 

Object : *engine* 
ref : definite 

and 
Let us next consider the problem of parsing ungrammat- 
ical input. We will again work through a short example, 
but this time LINK will fail to parse the input. After 
demonstrating why LINK fails, it will be easy to explain 
the extensions ULINK makes in order to parse the same 
input. 

The input we will try to parse is ‘engine stalls.’ LINK 
first reads the word “engine” and builds a DAG labelled N 
with the definition from “engine”. Since no determiner is 
present, LINK cannot build a larger constituent from the 
noun, and so continues on to the verb. As before, LINK 
builds a V node and then a VP node, again attaching the 
information that the object of the verb is *engine*. Now 
LINK can go no further: it has built N and VP DAGs, but 
no rule is indexed under these constituents. In particular, 
the S rule requires an NP label, and so cannot be indexed. 
Thus LINK fails to parse the sentence. 

It is clear, however, that the semantic information 
needed to combine the two constituents is readily avail- 
able. The N has a semantic representation (HEAD REP) 
= *engine*, and the VP knows that its (HEAD REP OB- 
JECT) = *engine*. It is reasonable to assume that there 
may be a valid connection between the N and the object 
of the verb. The problem is that we have no way of find- 
ing a rule to make that connection, because the rules are 
indexed only by syntactic constituents. 

ULINK makes two extensions to LINK to allow it to use 
semantic information to recover from grammatical errors. 
First, ULINK searches the semantic information available 
in the DAGs already built at the time an error is detected, 
trying to find a possible semantic connection between two 
constituents; and second, it cross-references the grammar 
rules according to the semantic connections the rule can 
make, so that if semantic connection between two con- 
stituents is found, we can find a rule to apply to make that 
connection. 

Consider the ‘engine stalls’ example. When the S rule 
was entered into the grammar, ULINK cross-referenced 
the rule by the OBJECT slot, since the S rule uses the 
OBJECT slot to make a semantic connection. When the 
error is encountered during parsing, ULINK discovers that 
there is a semantic connection in the OBJECT slot between 
the noun ‘engine’ and the VP ‘stalls.’ That is, the noun 
dag has a (HEAD REP) equal to *engine* and the VP has 

a (HEAD REP OBJECT) equal to *engine*. Since the 
semantic connection occurs in the OBJECT slot, ULINK 
looks for rules that make a semantic connection with an 
OBJECT. As mentioned before, the S rule makes this con- 
nection. Thus ULINK finds both the semantic connection 
and the rule to make that connection, so the S rule is ap- 
plied as if the Np DAG had already been built. 

he algorith 
The pseudo-code below describes the basic operations of 
IJLlNK. The three highlighted steps in IlLINK’s process- 
ing are described in more detail below. There are only two 
things to note here. The first is that ULINK’s extensions 
are used only when syntax alone does not enable the parser 
to find any more grammar rules to apply; in this sense 
grammatical errors are thought of as exceptions. Second, 
whereas in LINK a parsing failure occurs when a gram- 
matical error is detected, in ULINK a failure occurs when 
an error is detected and no more semantic connections can 
be found between the DAGs already built. 
At system start-up: 
<I> Cross-reference the rules by their 

syntactic constituents and by the 
semantic connections the rules make 

Loop until success or failure: 
Try to find a rule through normal LIEJ# 
processing: 
If rule is found Then 

Apply the rule; 
Else /* parse ungrammatical input */ 

While (no new DAG has been built) 
<2> Find a semantic connection 

(independent of the grammar) 
between two adjacent DAGs; 
Find a rule to apply to make 
that connection; 

<3> If (constituents required by 
the rule are 'close enough' 
to the constituents of the 
DAGs) Then 

Apply the rule build a new 
DAG; 

Cross-referencing the rules 
In ULINK, grammar rules are indexed not only by syn- 
tactic constituents, but also via the semantic connections 
the rules make. ULINK makes the assumption that any 
rule with a constraint involving a (HEAD REP) path is 
a candidate rule for making semantic connections. This 
is reasonable, since the (HEAD REP) path stores the se- 
mantic representation of each constituent that is built. In 
the S rule above, for example, the fact that the constraint 
‘(HEAD REP OBJECT) = (1 HEAD REP)’ is in the rule 
qualifies the S rule to be cross-listed by OBJECT as well 
as by the traditional syntactic indexing based on the sub- 
constituents (NP VP). As another example, the VP rule 
below would be cross-listed by the MODIFIES slot: 
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VP: 
((1) =VP 

(21 = Am 
(head) = (1 head) 
(head rep) = (2 head modifies) ) 

Finding a connection between constituents 
The algorithm to find a semantic connection begins by 
looking for a connection among DAGs covering the largest 
number of input words, and then continues searching 
shorter and shorter components until either a connection 
is found or no more DAGs remain to be searched. It only 
searches for connections between two adjacent DAGs. The 
algorithm examines the (HEAD REP) links of the two 
DAGs, since that is where the semantic information is 
stored. A connection is found whenever two DAGs share 
the same label (as in the example of engine and stall 
above), or whenever one DAG label is an instance of a 
class represented by the second DAG label (i.e. DAGl 
IS-A DAG2). 

Deciding whether or not to apply a rule 
Suppose that a semantic connection between two DAGs 
has been found, and a rule has been found that makes the 
appropriate connection. It does not necessarily follow that 
the rule should be applied. There must be some determina- 
tion that the syntactic constituents of the DAGs are “close 
enough” to the syntactic constituents required by the rule 
to warrant applying the rule to the DAGs. In the ‘engine 
stalls’ example, the constituents of the DAGs were N and 
VP, and the rule required an NP and VP. It is reasonable 
to assume that an N is close enough to an NP to apply the 
rule as if an NP had actually been built. Indeed, the algo- 
rithm actually changes the label of the DAG from N to NP 
before applying the rule. ULINK currently uses a global 
list of constituents considered to be close enough to other 
constituents to warrant applying rules to one constituent 
in place of the other. 

A second example 
Consider the sentence ‘Engine stalls intermittent.’ This 
sentence is ungrammatical because there is no determiner 
in the initial noun phrase, and because an adjective, ‘in- 
termittent,’ is modifying the verb ‘stalls.’ Assume that 
we update our grammar rules and dictionary as follows. 
Figure 2 describes how the VP rule works by showing 
the results of unification under normal processing - that 
is, assuming the sub-constituents VP and ADV had been 
built. 

Grammar rule: 
VP: 

((1) =VP 
(2) = ADV 
(head) = (1 head) 
(head rep) = (2 head modifies)) 

I 

fies 

c frequency I? frequency 

Figure 2: Unifying VP and ADV 

Dictionary definition: 
intermittent: 
WJ 
(head rep) = ENGINE-ACTION 
(head xnodifies) = (head rep) 
(head rep frequency) = *intermittent*) 

Let us follow ULINK’s parse of the sentence ‘En- 
gine stalls intermittent.’ At the time an error is de- 
tected, ULINK will have built both a VP DAG from the 
word ‘stall’ as described in the previous example, and 
a DAG labelled ADJ for the word ‘intermittent.’ The 
system will try to find a semantic connection between 
these two DAGs, and will find one because in the dic- 
tionary definition of the word ‘intermittent’ the unification 
constraint ‘(head rep) = ENGINE-ACTION’ declares that 
‘intermittent’ can modify an ENGINE-ACTION. Since a 
stall is an ENGINE-ACTION, as defined in the pragmatic 
knowledge given in the original example, then we have 
a connection between ‘stall’ and ‘intermittent’ (i.e. that 
a ‘stall’ is an ENGINE-ACTION and that ‘intermittent’ 
modifies ENGINE-ACTION’s by declaring that their fre- 
quency is *intermittent*). This connection is made in the 
MODIFIES slot of the DAG labelled ADJ. Since ULINK 
has cross-referenced the grammar rule (VP ADV) by the 
MODIFIES slot, we can find a grammar rule to make the 
semantic connection we have found. Next ULINK deter- 
mines that the ADJ label in the DAG is close enough to the 
ADV constraint in the rule to warrant applying the rule, as 
described in step three of the ULINK algorithm. Therefore 
the syntactic constraint requiring an ADV is relaxed, the 
rule is applied, a VP DAG is built, and normal processing 
continues. In this case, normal processing will result in 
the discovery of a second grammatical error; namely, that 
the parser can build an N node for ‘engine’ and a VP node 
for ‘stalls intermittent,’ but cannot combine an N and VP 
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into an S. The handling of this error was described in the 
first example of ULINK’s processing, and the result here 
is the same. Thus the final result of the parse will be as 
follows: 

*stall* 
Object : *engine* 
frequency: *intermittent* 
ref : definite 

iscussion of Related Researc 
In the past there have been two general approaches to 
processing ill-formed text, one which relies on syntactic 
parsing techniques and the other which analyzes the input 
as a sublanguage. The syntactic techniques can be subdi- 
vided into two areas. ‘Ihe first area uses grammar-specific 
rules to recover from errors. Weischedel and Sondheimer 
called such rules Meta-rules; other systems using this ap 
preach include Jensen et al (1983). The second of the 
syntactic approaches uses grammar-independent rules that 
depend only on the grammar formalism used. Mellish 
1989 sketches such a system based on an active chart 
parser. In some ways, Mellish’s approach is similar to 
ours, in that explicit rules are not used to drive the pro- 
cess of matching an ungrammatical input to the system’s 
grammar. Wowever, ULINK uses semantic information 
to drive this matching process, whereas the approach of 
Mellish and others relies exclusively on syntactic features. 

Encoding recovery rules as grammar-specific Me&rules 
has two potential drawbacks, one concerned with coverage 
of errors and the other concerned with efficiency. It may 
turn out to be an extremely difficult task to encode every 
new ungrammatical construction into a meta-rule. Even 
if this can be done for a given database of sentences, it 
may be that the rules themselves are not transferable to 
another domain, which might contain a different set of 
ungrammatical constructions. ULINK escapes the trans- 
portability problem because its grammar contains only the 
correct grammar of the language, which is much less likely 
to change from one domain to another. 

ULINK also has a possible processing advantage over 
both of the syntactic approaches mentioned above. Sys- 
tems that rely on syntactic processing to recover from er- 
rors must apply any rule that fits the input. At least for 
corpora containing terse text, there are often many differ- 
ent syntactic constructions which fit the phrases built at the 
time an error is discovered. Usually only one or two of 
these constructions makes semantic sense. ULINK is able 
to use the semantics of the phrases built so far to point 
directly to the rule to use to recover from the error. Thus 
ULINK trades off a search for a semantic connection and 
an application of one grammar rule with no search for a 
connection but the application of many rules. Which of 
these approaches is more efficient is an empirical question 
that we will be addressing. 

The second approach to ungrammaticallity is to treat 
the input as a sublanguage. This approach is described in 
Kittredge and Lehrberger (1982), Grishman and Kittredge 

(1986), and by work that has grown out of the Linguis- 
tic String Project at NYU (see for example Sager (1982); 
Marsh (1983); and Grishman et a2 (1986)). A sublanguage 
is characterized by a restricted domain and by greater syn- 



The comparsisons will cover both the efficiency of the 
parse and the percentage of errors covered by the two 
systems. One interesting possibility is that our approach 
will recover from some errors better than the syntactic 
approaches, while syntactic methods will work better for 
other errors. For example, our approach works well for 
terse text, in which many words have been left out and 
in which morphological changes that lengthen words are 
often ignored. On the other hand, it is not clear how well 
our approach will handle sentences with extra words - that 
is, garbage - embedded in them. It may be that syntactic 
approaches handle this problem better, though the issue is 
far from settled. The second direction is to test ULINK 
in another domain, both to see how well the system cov- 
ers the grammatical errors of that domain, and to see how 
long it takes to encode the knowledge of the second do- 
main into the representations needed by ULINK. The out- 
come of these two efforts will help to determine whether a 
semantics-driven approach to ungrammatical input is more 
effective than other approaches have been. 
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