
timizing Rules in Production System Programs

Toru Ishida
NTT Communications and Information Processing Laboratories

l-2356, Take, Yokosuka-shi, 238-03, Japan

Abstract

Recently developed production systems enable
users to specify an appropriate ordering or a
clustering of join operations. Various efficiency
heuristics have been used to optimize production
rules manually. The problem addressed in this
paper is how to automatically determine the best
join structure for production system programs.
Our algorithm is not to directly apply the effi-
ciency heuristics to programs, but rather to enu-
merate possible join structures under various con-
straints. Evaluation results demonstrate this al-
gorithm generates a more efficient program than
the one obtained by manual optimization.

1

The efficiency of production systems rapidly decreases
when the number of working memory elements becomes
larger. This is because, in most implementations, the cost
of join operations performed in the match process is di-
rectly proportional to the square of the number of working
memory elements. Moreover, the inappropriate ordering
of conditions causes a large amount of intermediate data,
which increases the cost of subsequent join operations.

To cope with the above problem, ART [Clayton, 19871,
YES/OPS [Schor et al., 19871 and other production sys-
tems have introduced language facilities which enable users
to specify an appropriate ordering or a clustering of join
operations. The following are major heuristics, which are
known for creating an efficient join structure.

a) Place restrictive conditions first.
b) Place volatile conditions last.
c) Share join clusters among rules.

Heuristic a) and c) are also known as the heuristics of
optimizing conjunctive queries in AI and database areas
[Smith et al., 1985; Warren, 1981; Jarke et ad., 19841. On
the other hand, heuristic b) is peculiar to production sys-
tems. Since the three heuristics often conflict with each
other, there is no guarantee that a particular heuristic al-
ways leads to optimization. Thus, without an optimizer,
expert system builders have to proceed through a process
of trial and error.

There are two more reasons for the development of the
production system optimizer.

1. To enable expert system users to perform optimiza-
tion:
The optimal join structure depends on the execution
statistics of production system programs. Thus, even

2 To improve eficiency without sacrificing maintain-
ability:

This paper describes an optimization algorithm to min-

Production systems are widely used to represent ex-
pertise because of their maintainability. However, op-
timization sometimes makes rules unreadable by re-
ordering conditions only to reduce execution time. To
preserve the advantages of production systems, source
program files to be maintained must be separated from
optimized program files to be executed. Using the op-
timizer, users can improve efficiency without sacrific-
ing maintainability by generating optimized programs
each time rules are modified.

if the rules are the same, results of the optimization
may differ when different working memory elements
are matched to the rules. For example, the optimal
join structure for a circuit design expert system de-
pends on the circuit to be designed. This means that
the optimization task should be performed not only
by expert system builders but also by expert system
users. The optimizer can help users to tune expert
systems to their particular applications.

imize the total cost of join operations in a production sys-
tem program. Optimization is performed based on execu-
tion statistics measured from earlier runs of the program.
All rules are optimized together so that join operations
can be shared by multiple rules. Our approach is not to
directly apply the efficiency heuristics to the original rules,
but rather to enumerate possible join structures and to se-
lect the best one. The basic methodology is to find effec-
tive constraints and to use those constraints to cut off an
exponential order of possibilities. The evaluation results
demonstrate the algorithm generates a more efficient pro-
gram than the one optimized by the expert system builder
himself.

2 nitisns and C
Before describing our approach in detail, a brief overview
of production systems and their topological transformation
will be given. We will use an OPS5-like syntax [Forgy,
19811 for the reader’s convenience, and assume the reader’s
familiarity with the RETE match algorithm [Forgy, 19821.

2.1 Production System
A production system is defined by a set of rules or produc-
tions, called the production memory (PM), together with a
database of assertions, called the working memory (WM).
Assertions in the WM are called working memory elements
(WMEs). Each rule consists of a conjunction of condition

Ishida 699

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

elements, called the left-hand side (LHS) of the rule, along
with a set of actions called the right-hand side (RHS).

The RHS specifies information which is to be added to
or removed from the WM when the LHS is successfully
matched with the contents of the WM. There are two kinds
of condition elements: positive condition elements that are
satisfied when there exists a matching WME, and negative
condition elements that are satisfied when no matching
WME is found. Pattern variables in the LHS are consis-
tently bound throughout the positive condition elements.

The production system interpreter repeatedly executes
the following cycle of operations:

1. Match:
For each rule, determine whether the LHS matches
the current environment of the WM.

2. Conflict Resolution:
Choose exactly one of the matching instances of the
rules according to some predefined criterion, called a
conflict resolution strategy.

3. Act:
Add to or remove from the WM all assertions as spec-
ified by the RHS of the selected rule.

In the RETE algorithm, the left-hand sides of rules are
transformed into a special kind of data-flow network. The
network consists of one-input nodes, two-input nodes, and
terminal nodes. The one-input node represents an intru-
condition test or selection, which corresponds to an indi-
vidual condition element. The two-input node represents
an inter-condition test or join, which tests for consistent
variable bindings between condition elements.

When a WME is added to or removed from the WM, a
token which represents the action is passed to the network.
First, the intra-condition tests are performed on one-input
nodes; then matched tokens are stored in alpha-memories,
and copies of the tokens are passed down to successors of
the one-input nodes. The inter-condition tests are subse-
quently executed at two-input nodes. The tokens arriving
at a two-input node are compared against the tokens in
the memory of the opposite side branch. Then, paired
tokens with consistent variable bindings are stored in beta-
memories, and copies of the paired tokens are passed down
to further successors. Tokens reaching the terminal nodes
activate corresponding rules.

2.2 Topological Transformation
Examples of various join structures in which condition ele-
ments are variously clustered are shown in Figure 1. Since
the join operation is commutative and associative, an LHS
which consists of only positive condition elements can ba-
sically be transformed to any form. For example, in Figure
1, nodes a, b and c can be placed in any order, but if MEA
[Forgy, 19811 is used as a conflict resolution strategy, node
s cannot change its position. Therefore, in this case, 24

^S possible join structures, i.e. an exponential order of join
structures, can exist.

When negative condition elements are present, there are
a number of constraints in the transformation of a given
LHS into an equivalent one. Since the role of negative
condition elements is to filter tokens, they cannot be the
first condition element, and all their pattern variables have

6)
((a) 64

w ((a)

03 W
(c>)

Figure 1: Join structure variations

to be bound by preceding positive condition elements.
To simplify the following discussion, however, we ignore
the detailed topological transformation constraints. We
also do not treat the non-tree-type join topology, such as

w ere cs.s~(ea)ww)oL h t wo a’s share the same one-input

cost
3.1 Parameters

The cost model of join operations is shown in Figure 2.
Networks are bounded by their lowest nodes and are said to
be join structures of those particular nodes. For example,
the network shown in Figure 2, is a join structure of node
c. There are five parameters associated with each node.
These are Token(n), Memory(n), Test(n), Cost(n), and
Ratio(n).

Token(n) indicates the running total of tokens passed
from a node n to successor nodes. Memory(n) indicates
the average number of tokens stored in an alpha- or a
beta-memory of n. Test(n) indicates the running total of
inter-condition tests at n. A consistency check of variable
bindings between one arriving token and one token stored
in a memory is counted as one test. Cost(n) indicates
the total cost of inter-condition tests performed in the join
structure of n. The cost function is defined later. Ratio(n)
indicates the ratio of how many inter-condition tests are
successful at 12.

Before optimization, a production system program is ex-
ecuted once, and the values of one-input node parameters
are determined. In the process of optimization, various
join structures are created and evaluated. The values of
the thus created two-input node parameters are calculated
each time using the equations defined as follows.

(W
(a))
(UN
03)

700 Machine Architectures and Computer Languages for AI

When b is a positive condition element:

Ratio(c) = Ratio(b)

Test(c) = Token(a) * Memory(b) + Token(b) * Memory(a)

Token(c) = Test(c) * Ratio(c)

Memory(c) = Memory(a) * Memory(b) * Ratio(c)

Cost(c) = Cost(a) + Cost(b) + Test(c)

When b is a negative condition element:

Ratio(c) = Ratio(b)

Test(c) = Token(a) * Memory(b) + Token(b) * Memory(a)

Token(c) = Token(a) * Ratio(c)

Memory(c) = Memory(a) * Ratio(c)

Cost(c) = Cost(a) + Cost(b) + Test(c)

Figure 2: Cost model

3.2 Parameters for One-Input Nodes
Let b be a one-input node. Token(b), Memory(b) and ra-
tios at all two-input nodes are measured once. Then the
ratio at the two-input node whose right predecessor is b is
set to Ratio(b); i.e., Ratio(b) holds an approximate ratio
of how many inter-condition tests are successful at the di-
rect successor of b. Test(b) and Cost(6) are always set at
0, because no join operations are performed at one-input
nodes.

3.3 Parameters for Two-Input Nodes
Let c be a two-input node joining two nodes, a and b, as
shown in Figure 2. Note a and b are either one- or two-
input nodes. Then, the following equations express the
parameters of two-input nodes.

1. Test(c):
When tokens are passed from the left, the num-
ber of tests performed at c is represented by
Token(a)-+Memory(b), and when from the right,
Token(b)*Memory(a). Thus, Test(c) is represented by
Token(a)*Memory(b)+Token(b)*Memory(a).

2. Memory(c) and Token(c):
When the right predecessor node is a nega-
tive one-input node, Memory(c) is represented
by Memory(a)*Ratio(c), otherwise by Memory(a)*
Memory(b)*Ratio(c). Similarly, when the right pre-
decessor node is a negative one-input node, Token(c)
is represented by Token(a)*Ratio(c), otherwise by
Test(c)*Ratio(c). This is because the negative con-
dition element filters tokens passed from the left pre-

decessor node.
3. Ratio(c):

4

4

The accurate value of Ratio(c) is difficult to know, be-
cause it depends on the correlation between tokens to
be joined. We use Ratio(b) for an approximate value
of Ratio(c), even when the join structure is different
from the measured one. Various techniques have been
developed to refine the ratio, but these will not be
discussed in this paper due to space limitations.
Cost(c):
In general, the local cost at c can be represented by
C1*Test(c)+C%Token(c), where C1 and CZ are ap-
propriate constants. In this paper, we use Cl=1 and
CZ=O in order to set a clearly defined goal: reducing
the number of inter-condition tests. Thus Cost(c) is
represented by Cost(a)+Cost(b)+Test(c). However,
the constants should be adjusted to the production
system interpreters. For example, for OPS5, C1 may
be large, because join operations are executed in a
nested-loop structure. For [Gupta et al., 19871, on
the other hand, 6’2 may be large, because hash tables
are used.

ization Algorit
4.1 Outline of the Algorithm
As described above, efficiency heuristics cannot be applied
independently, because the heuristics often conflict with
one another. For example, applying one heuristic to speed
up some particular rule destroys shared join operations,
slowing down the overall program [Clayton, 19871. On
the other hand, since there exists an exponential order of
possible join structures, a simple generate-and-test method
cannot handle this problem. Our approach is to generate
join structures under various constraints, which reduce the
possibilities dramatically. An outline of the algorithm is
shown in Figure 3. The key points are as follows.

1. Sort rules according to their cost, measured from ear-
lier runs of the program. Optimize rules one by one
from higher-cost rules. This is done to allow higher-
cost rules enough freedom to select join structures.
(See multiple-rule optimization, described later.)
Before starting the optimization of each rule, the fol-
lowing nodes are registered to the node-list of the rule:
one-input nodes, each of which corresponds to a condi-
tion element of the rule, and pre-calculated two-input
nodes, which are introduced to reduce search possi-
bilities and to increase sharing join operations. The
details of pre-calculated two-input nodes are described
later.
In the process of optimizing each rule, two-input nodes
are created by combining two nodes in the node-list.
The created nodes are registered in the node-list if
the same join structures have not already been regis-
tered. The algorithm chooses newer nodes to acceler-
ate creating a complete join structure of the rule. Con-
straints proposed later are used to reduce the number
of possibilities.
After creating all possible join structures, select the
lowest-cost complete join structure.

Ishida 701

clear the rule-list;
push all rules to the rule-Zisr,
sort the rule-list in descending order of cost;
for I from the first rule to the last rule of the rule-list;

clear the node-list;
push all one-input nodes of r to the node-list;
let k be the number of one-input nodes;
append precalculated two-input nodes to the node-list;
for i from the second node to the last node of the node-list;

forj from the first node to the i-lth node of the node-list;
if all constraints are satisfied then do;

create a two-input node PZ to join i and&
calculate parameters of n;
push n to just after the max(i,k)th node of the node-list

end

(p example
(context phasel) ---- (s)
(class-a <x> q>) ---- (a)
(class-b <y> <z>) ---- (b)
(class-c CZ> CW>) ---- (c)
-->
(make))

0 creation is allowed

0 ~~ creation is prevented

end
end Figure 4: Example of the connectivity constraint

find the lowest-cost complete join structure;
generate an optimized version of r

end
variables appearing in Conditions(n). The constraint pre-
vents the creation of a two-input node to join n and m,
if

Figure 3: Outline of the optimization algorithm (i) Variables(n)OVariables(m)=0, and
(ii) 3 p,q $ Conditions(n)UConditions(m)

such that Variables(n)OVariables(p)#0, and
4.2 Constraints for Reducing Possibilities Variables(m)nVariables(q)#S.

The following constraints are used for reducing possible
join structures.

4.2.1 Minimal-Cost Constraint

The minimal-cost constraint prevents the creation of a
join structure whose cost is higher than that of the reg-
istered one. More formally, let Conditions(n) be a set
of condition elements included in the join structure of n.
Conditions(n)={ n}, h w en n is a one-input node. The con-
straint prevents creating n, if

3m E node-list
such that Conditions(n)CConditions(m), and

In the example shown in Figure 4, the connectivity con-
straint prevents joining a and c, because there is no shared
variable (thus (i) is satisfied), and there remains a possi-
bility of avoiding such a costly operation, if a and b or b
and c are joined first (thus (ii) is satisfied). On the other
hand, joining s and a is not prevented, though there is no
shared variable. This is because, sooner or later, s will be
joined with some node without a shared variable anyway
(thus (ii) is not satisfied).

4.2.3 Priority Constraint

Based on the execution statistics, it may be possible to
prioritize the one-input nodes. The priority constraint pre-

Cost(n)>Cost(m). . ’

In contrast, if n is in the node-list and m is created, then
n is removed from the node-list. The minimal-cost con-
straint guarantees optimality, if the tree-type join topology
is assumed.

To take advantage of the minimal-cost constraint, it is
important to create large and low-cost join structures in
the early stages. In our system, two-input nodes in the
original rule are registered as the pre-calculated nodes. Us-
ing this technique, we can prevent creating a join structure,
whose cost is higher than the original one.

vents creating two-input nodes joining lower-priority nodes
while higher-priority nodes can be joined. More formally,
let p and q be one-input nodes, and p>q indicates that p
has a higher priority than q. The constraint prevents the
creation of a two-input node to join n and m, if

3 p # Conditions(n)UConditions(m),
3 q E Conditions(m)
such that (i) p>q, and

(ii) Variables(n)OVariables(p)#0, or
Variables(n)nVariables(m)=0.

At present, we define p>q only when Token(p)>Token(q)

4.2.2 Connectivity Constraint

The connectivity constraint prevents an inter-condition
test with no shared variable, which produces a full combi-
nation of tokens to be joined. More formally, let p and q
be one-input nodes, and Variables(n) be a set of pattern

and Memory(p)>Memory(q). We introducedjii) to avoid
the situation where joining n and p is prevented by the con-
nectivity constraint while joining n and m is prevented by
the priority constraint. The connectivity and the priority
constraints can significantly reduce the search possibilities,
but sacrifice the guarantee of optimality.

702 Machine Architectures and Computer Languages for AI

Table 2: Effectiveness of constraints Table 1: Optimization Results

I Number of inter-condition tests
Condition
elements Original Manual With

Optimizer

Rule
No.

1 21
2 18
3 17
4 22
5 21
6 18
7 17

* 8 15
9 7

10 6
11 17
12 7
13 6

* 14 23
. . .

Total
33

Average
14.2

CPU time
(Normalized)

46432
29548
28548
25513
25513
10322
10322
9966
9830
9278
8566
7656
7544
3160

. .

Total
241329

1 .oo

47888
27244
27244

7813
7813
3749
3749
9966
1180
630

8566
520
408

4616
. .

Total
159517

0.69

22396
494
494
144
144

3749
3749

12539
1180
630

4640
760
648

13780
. .

Total
75002

0.53

Created
two-input
nodes

179
198
92

236
94

552
194
228

99
20

116
44
22
76
. .

Avera g e
131.8

- The cost of shared nodes is divided by the number of sharing
rules.

- The number of tests of marked rules is increased by optimi-
zation. However, this does not mean the optimization failed.
For example, Nos.1 and 14 share many nodes. The sum of the
costs of the two rules has been decreased considerably.

ultiple-Rule Optimization
Sharing join operations by multiple rules reduces the total
cost of a program. We use the following techniques to
increase the sharing opportunities.

1. When creating a two input-node n, we assume that
n will be shared by all rules which contain Condi-
tions(n). We reduce the value of Cost(n) based on
this prediction: the cost is recalculated by dividing
the original cost by the number of rules which can
share the node.

2. When optimizing each rule, sharable existing two-
input nodes are registered in the node-list of the rule
as pre-calculated two-input nodes. This time, costs of
those two-input nodes are set to 0, because no cost is
required to share existing nodes.

Using the above techniques, multiple-rule optimization
can be realized without an explosion of combinations.
Rules are optimized one by one, but the result is obtained
as if all rules are optimized at once.

We have implemented an optimizer applicable to OPS5-
like production systems. The optimizer reads a program
and its execution statistics, then outputs the optimized

Rule
No.

1
2
3
4
5
6
7
8
9

10
11
12
13

Condition
elements

21
18
17
22
21
18
17
15
7
6

17
7
6
.

Number of created two-input nodes

Minimal-cost

>lOOO
>lOOO
>lOOO
>I000
>lOOO
>lOOO
>lOOO
>I000

121
22

>lOOO
68
24
. .

Minimal-cost
Connectivity

680
438
162
887
139

>lOOO
>lOOO

513
99
20

382
44
22
.

Minimal-cost
Connectivity
Priority

179
198

92
236

94
552
194
228
99
20

116
44
22

.

- The priority constraint is applied only when the number
of condition elements is greater than 10.

program. In our system, the overhead of statistics mea-
surement is less than 5%. We apply the optimizer to a real-
world production system program, a circuit design expert
system currently under development at NTT Laboratories
[Ishikawa et ad., 19871. This program consists of 107 rules,
which generate and optimize digital circuits. In this eval-
uation, the approximate number of WMEs representing a
circuit is 300 to 400.

There were two reasons why this program was selected
as our benchmark. First, the program includes many
large rules consisting of more than 20 condition elements.
The program is thus not a mere toy for evaluating our
constraint-based approach to cope with the combinatorial
explosion. The second and main reason is that the pro-
gram was optimized by the expert system builder himself.
He spent two to three days optimizing it manually.

The result of optimizing the main module of the pro-
gram, which consists of 33 rules, is shown in Table 1. The
total number of inter-condition tests was reduced to l/3,
and CPU time to l/2. Perhaps the most important thing
to note is that the optimizer produces a more efficient pro-
gram than the one obtained by manual optimization.

The optimization time is directly proportional to the
square of the number of created two-input nodes. The
effectiveness of the constraints is shown in Table 2. With-
out the minimal-cost constraint, it is impossible to opti-
mize rules which contain more than 10 condition elements.
The connectivity and the priority constraints also demon-
strate significant effects. Currently, the initial version of
the optimizer takes somewhat more than 10 minutes on a
Symbolics work station to optimize the circuit design pro-
gram. For average production system programs, in which
the number of condition elements is 5 or so, optimization
is usually completed in a few minutes.

Ishida 703

6 Related Work

The TREAT algorithm [Miranker, 19871 optimizes join op-
erations dynamically. The method is called seed-ordering,
where the changed alpha-memory is considered first, and
the order of the remaining condition elements is retained.
Since the overhead cannot be ignored for run-time opti-
mization, sophisticated techniques such as those described
here cannot be applied.

Compile-time optimization has been studied for conjunc-
tive queries in AI and database areas [Smith et al., 1985;
Warren, 1981; Jarke et al., 19841. Various heuristics are
investigated to determine the best ordering of a set of con-
juncts. The SOAR reorderer [Scales, 19861 attempts to
directly apply those heuristics to the optimization of pro-
duction rules. However, we found that applying them to
production rules often fails to produce better join struc-
tures.

Most of the previous studies on optimizing conjunctive
queries are based only on statistics about sizes of the WM.
Since production systems can be seen as programs on a
database, statistics about changes in the WM (program
behavior of production systems) should also be considered.
This makes optimization of production rules more complex
than that of conjunctive queries.

The connectivity and the priority constraints proposed
in this paper are respectively based on the connectivity
and the cheapest-first heuristics described in [Smith et al.,
19851. However, the program behavior forces changes in
the usage of those heuristics. In previous works, the heuris-
tics are used to directly produce semi-optimal queries. In
this paper, we modify the heuristics to be a slightly weaker
or less limiting, and use them as constraints to reduce the
possibilities.

Many papers have also been published on the subject of
parallel matching [Gupta et ub., 19871 and parallel firing
[Ishida et al., 19851 of production system programs. Since
many of these studies have assumed the RETE pattern
matching, the optimization algorithm proposed here is also
effective in the parallel execution environment.

7 Conclusion

We have explored an optimization algorithm for produc-
tion system programs. Applying the algorithm to a design
expert system demonstrates that the algorithm produces
a better program than one optimized by expert system
builders. The complexity of optimization increases when
the number of rules and working memory elements be-
comes larger. We believe the algorithm will release both
expert system builders and users from time-consuming op-
timization tasks.

Acknowledgment

The author wishes to thank Yuzou Ishikawa for providing
a circuit design expert system for this study, and Ryohei
Nakano, Kazuhiro Kuwabara and Makoto Yokoo for their
participation in helpful discussions.

704 Machine Architectures and Computer Languages for AI

References
[Brownston et al., 19851 L. Brownston, R. Farrell, E. Kant

and N. Martin. Programming Expert System in OPS5:
An Introduction to Rule Bused Programming. Addison-
Wesley, 1985.

[Clayton, 19871 B. D. Clayton. ART Programming Tuto-
rial, Volume Three: Advanced Topics in ART. Inference
Corp, 1987.

[Forgy, 19811 C. L. Forgy. OPS5 User’s Manual. CS-81-
135, Carnegie Mellon University, 1981.

[Forgy, 19821 C. L. Forgy. A Fast Algorithm for the Many
Pattern / Many Object Pattern Match Problem. Artifi-
cial Intelligence, 19:17-37, 1982.

[Gupta et al., 19871 A. Gupta, C. L. Forgy, D. Kalp, A.
Newell and M. Tambe. Results of Parallel Implementa-
tion of OPS5 on the Encore Multiprocessor. CS-87-146,
Carnegie Mellon University, 1987.

[Ishida et al., 19851 T. Ishida and S. J. Stolfo. Towards the
Parallel Execution of Rules in Production System pro-
grams. In Proceedings of Internutionad Conference on
Parallel Processing, pages 568-575, 1985.

[Ishikawa et al., 19871 Y. Ishikawa, H. Nakanishi and Y.
Nakamura. An Expert System for Optimizing Logic Cir-
cuits. In Proceedings of the 34th National Convention of
Information Processing Society of Japan (in Japanese),
pages 1391-1392, 1987.

[Jarke et al., 19841 M. Jarke and J. Koch. Query Op-
timization in Database Systems. Computing Surveys,
16(2):111-152, 1984.

[Miranker, 19871 D. P. Miranker. TREAT: A Better Match
Algorithm for AI Production Systems. In Proceedings
AAAI-87, pages 42-47, 1987.

[Scales, 19861 D. J. S ca es. 1 Efficient Matching Algorithms
for the SOAR/OPS5 Production System. STAN-CS-86-
1124, Stanford University, 1986.

[Schor et al., 19861 M. I. Schor, T. P. Daly, H. S. Lee and
B. R. Tibbitts. Advances in RETE Pattern Matching.
In Proceedings AAAI-86, pages 226-232, 1986.

[Smith et al., 19851 D. E. Smith and M. R. Genesereth.
Ordering Conjunctive Queries. Artificial Intelligence,
26:171-215, 1985.

[Warren, 19811 D. H. D. Warren. Efficient Processing of
Interactive Relational Database Queries Expressed in
Logic. In Proceedings of the 7th VLDB, pages 272-281,
1981.

