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Abstract 

Recently developed production systems enable 
users to specify an appropriate ordering or a 
clustering of join operations. Various efficiency 
heuristics have been used to optimize production 
rules manually. The problem addressed in this 
paper is how to automatically determine the best 
join structure for production system programs. 
Our algorithm is not to directly apply the effi- 
ciency heuristics to programs, but rather to enu- 
merate possible join structures under various con- 
straints. Evaluation results demonstrate this al- 
gorithm generates a more efficient program than 
the one obtained by manual optimization. 

1 

The efficiency of production systems rapidly decreases 
when the number of working memory elements becomes 
larger. This is because, in most implementations, the cost 
of join operations performed in the match process is di- 
rectly proportional to the square of the number of working 
memory elements. Moreover, the inappropriate ordering 
of conditions causes a large amount of intermediate data, 
which increases the cost of subsequent join operations. 

To cope with the above problem, ART [Clayton, 19871, 
YES/OPS [Schor et al., 19871 and other production sys- 
tems have introduced language facilities which enable users 
to specify an appropriate ordering or a clustering of join 
operations. The following are major heuristics, which are 
known for creating an efficient join structure. 

a) Place restrictive conditions first. 
b) Place volatile conditions last. 
c) Share join clusters among rules. 

Heuristic a) and c) are also known as the heuristics of 
optimizing conjunctive queries in AI and database areas 
[Smith et al., 1985; Warren, 1981; Jarke et ad., 19841. On 
the other hand, heuristic b) is peculiar to production sys- 
tems. Since the three heuristics often conflict with each 
other, there is no guarantee that a particular heuristic al- 
ways leads to optimization. Thus, without an optimizer, 
expert system builders have to proceed through a process 
of trial and error. 

There are two more reasons for the development of the 
production system optimizer. 

1. To enable expert system users to perform optimiza- 
tion: 
The optimal join structure depends on the execution 
statistics of production system programs. Thus, even 

2 To improve eficiency without sacrificing maintain- 
ability: 

This paper describes an optimization algorithm to min- 

Production systems are widely used to represent ex- 
pertise because of their maintainability. However, op- 
timization sometimes makes rules unreadable by re- 
ordering conditions only to reduce execution time. To 
preserve the advantages of production systems, source 
program files to be maintained must be separated from 
optimized program files to be executed. Using the op- 
timizer, users can improve efficiency without sacrific- 
ing maintainability by generating optimized programs 
each time rules are modified. 

if the rules are the same, results of the optimization 
may differ when different working memory elements 
are matched to the rules. For example, the optimal 
join structure for a circuit design expert system de- 
pends on the circuit to be designed. This means that 
the optimization task should be performed not only 
by expert system builders but also by expert system 
users. The optimizer can help users to tune expert 
systems to their particular applications. 

imize the total cost of join operations in a production sys- 
tem program. Optimization is performed based on execu- 
tion statistics measured from earlier runs of the program. 
All rules are optimized together so that join operations 
can be shared by multiple rules. Our approach is not to 
directly apply the efficiency heuristics to the original rules, 
but rather to enumerate possible join structures and to se- 
lect the best one. The basic methodology is to find effec- 
tive constraints and to use those constraints to cut off an 
exponential order of possibilities. The evaluation results 
demonstrate the algorithm generates a more efficient pro- 
gram than the one optimized by the expert system builder 
himself. 

2 nitisns and C 
Before describing our approach in detail, a brief overview 
of production systems and their topological transformation 
will be given. We will use an OPS5-like syntax [Forgy, 
19811 for the reader’s convenience, and assume the reader’s 
familiarity with the RETE match algorithm [Forgy, 19821. 

2.1 Production System 
A production system is defined by a set of rules or produc- 
tions, called the production memory (PM), together with a 
database of assertions, called the working memory (WM). 
Assertions in the WM are called working memory elements 
(WMEs). Each rule consists of a conjunction of condition 
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elements, called the left-hand side (LHS) of the rule, along 
with a set of actions called the right-hand side (RHS). 

The RHS specifies information which is to be added to 
or removed from the WM when the LHS is successfully 
matched with the contents of the WM. There are two kinds 
of condition elements: positive condition elements that are 
satisfied when there exists a matching WME, and negative 
condition elements that are satisfied when no matching 
WME is found. Pattern variables in the LHS are consis- 
tently bound throughout the positive condition elements. 

The production system interpreter repeatedly executes 
the following cycle of operations: 

1. Match: 
For each rule, determine whether the LHS matches 
the current environment of the WM. 

2. Conflict Resolution: 
Choose exactly one of the matching instances of the 
rules according to some predefined criterion, called a 
conflict resolution strategy. 

3. Act: 
Add to or remove from the WM all assertions as spec- 
ified by the RHS of the selected rule. 

In the RETE algorithm, the left-hand sides of rules are 
transformed into a special kind of data-flow network. The 
network consists of one-input nodes, two-input nodes, and 
terminal nodes. The one-input node represents an intru- 
condition test or selection, which corresponds to an indi- 
vidual condition element. The two-input node represents 
an inter-condition test or join, which tests for consistent 
variable bindings between condition elements. 

When a WME is added to or removed from the WM, a 
token which represents the action is passed to the network. 
First, the intra-condition tests are performed on one-input 
nodes; then matched tokens are stored in alpha-memories, 
and copies of the tokens are passed down to successors of 
the one-input nodes. The inter-condition tests are subse- 
quently executed at two-input nodes. The tokens arriving 
at a two-input node are compared against the tokens in 
the memory of the opposite side branch. Then, paired 
tokens with consistent variable bindings are stored in beta- 
memories, and copies of the paired tokens are passed down 
to further successors. Tokens reaching the terminal nodes 
activate corresponding rules. 

2.2 Topological Transformation 
Examples of various join structures in which condition ele- 
ments are variously clustered are shown in Figure 1. Since 
the join operation is commutative and associative, an LHS 
which consists of only positive condition elements can ba- 
sically be transformed to any form. For example, in Figure 
1, nodes a, b and c can be placed in any order, but if MEA 
[Forgy, 19811 is used as a conflict resolution strategy, node 
s cannot change its position. Therefore, in this case, 24 

^S possible join structures, i.e. an exponential order of join 
structures, can exist. 

When negative condition elements are present, there are 
a number of constraints in the transformation of a given 
LHS into an equivalent one. Since the role of negative 
condition elements is to filter tokens, they cannot be the 
first condition element, and all their pattern variables have 
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Figure 1: Join structure variations 

to be bound by preceding positive condition elements. 
To simplify the following discussion, however, we ignore 
the detailed topological transformation constraints. We 
also do not treat the non-tree-type join topology, such as 

w ere cs.s~(ea)ww)oL h t wo a’s share the same one-input 

cost 
3.1 Parameters 

The cost model of join operations is shown in Figure 2. 
Networks are bounded by their lowest nodes and are said to 
be join structures of those particular nodes. For example, 
the network shown in Figure 2, is a join structure of node 
c. There are five parameters associated with each node. 
These are Token(n), Memory(n), Test(n), Cost(n), and 
Ratio(n). 

Token(n) indicates the running total of tokens passed 
from a node n to successor nodes. Memory(n) indicates 
the average number of tokens stored in an alpha- or a 
beta-memory of n. Test(n) indicates the running total of 
inter-condition tests at n. A consistency check of variable 
bindings between one arriving token and one token stored 
in a memory is counted as one test. Cost(n) indicates 
the total cost of inter-condition tests performed in the join 
structure of n. The cost function is defined later. Ratio(n) 
indicates the ratio of how many inter-condition tests are 
successful at 12. 

Before optimization, a production system program is ex- 
ecuted once, and the values of one-input node parameters 
are determined. In the process of optimization, various 
join structures are created and evaluated. The values of 
the thus created two-input node parameters are calculated 
each time using the equations defined as follows. 

(W 
(a)) 
(UN 
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When b is a positive condition element: 

Ratio(c) = Ratio(b) 

Test(c) = Token(a) * Memory(b) + Token(b) * Memory(a) 

Token(c) = Test(c) * Ratio(c) 

Memory(c) = Memory(a) * Memory(b) * Ratio(c) 

Cost(c) = Cost(a) + Cost(b) + Test(c) 

When b is a negative condition element: 

Ratio(c) = Ratio(b) 

Test(c) = Token(a) * Memory(b) + Token(b) * Memory(a) 

Token(c) = Token(a) * Ratio(c) 

Memory(c) = Memory(a) * Ratio(c) 

Cost(c) = Cost(a) + Cost(b) + Test(c) 

Figure 2: Cost model 

3.2 Parameters for One-Input Nodes 
Let b be a one-input node. Token(b), Memory(b) and ra- 
tios at all two-input nodes are measured once. Then the 
ratio at the two-input node whose right predecessor is b is 
set to Ratio(b); i.e., Ratio(b) holds an approximate ratio 
of how many inter-condition tests are successful at the di- 
rect successor of b. Test(b) and Cost( 6) are always set at 
0, because no join operations are performed at one-input 
nodes. 

3.3 Parameters for Two-Input Nodes 
Let c be a two-input node joining two nodes, a and b, as 
shown in Figure 2. Note a and b are either one- or two- 
input nodes. Then, the following equations express the 
parameters of two-input nodes. 

1. Test(c): 
When tokens are passed from the left, the num- 
ber of tests performed at c is represented by 
Token( a)-+Memory( b), and when from the right, 
Token( b)*Memory( a). Thus, Test(c) is represented by 
Token( a)*Memory( b)+Token( b)*Memory( a). 

2. Memory(c) and Token(c): 
When the right predecessor node is a nega- 
tive one-input node, Memory(c) is represented 
by Memory(a)*Ratio(c), otherwise by Memory(a)* 
Memory( b)*Ratio( c). Similarly, when the right pre- 
decessor node is a negative one-input node, Token(c) 
is represented by Token( a)*Ratio( c), otherwise by 
Test(c)*Ratio(c). This is because the negative con- 
dition element filters tokens passed from the left pre- 

decessor node. 
3. Ratio(c): 

4 

4 

The accurate value of Ratio( c) is difficult to know, be- 
cause it depends on the correlation between tokens to 
be joined. We use Ratio(b) for an approximate value 
of Ratio(c), even when the join structure is different 
from the measured one. Various techniques have been 
developed to refine the ratio, but these will not be 
discussed in this paper due to space limitations. 
Cost(c): 
In general, the local cost at c can be represented by 
C1*Test(c)+C%Token(c), where C1 and CZ are ap- 
propriate constants. In this paper, we use Cl=1 and 
CZ=O in order to set a clearly defined goal: reducing 
the number of inter-condition tests. Thus Cost(c) is 
represented by Cost( a)+Cost( b)+Test( c). However, 
the constants should be adjusted to the production 
system interpreters. For example, for OPS5, C1 may 
be large, because join operations are executed in a 
nested-loop structure. For [Gupta et al., 19871, on 
the other hand, 6’2 may be large, because hash tables 
are used. 

ization Algorit 
4.1 Outline of the Algorithm 
As described above, efficiency heuristics cannot be applied 
independently, because the heuristics often conflict with 
one another. For example, applying one heuristic to speed 
up some particular rule destroys shared join operations, 
slowing down the overall program [Clayton, 19871. On 
the other hand, since there exists an exponential order of 
possible join structures, a simple generate-and-test method 
cannot handle this problem. Our approach is to generate 
join structures under various constraints, which reduce the 
possibilities dramatically. An outline of the algorithm is 
shown in Figure 3. The key points are as follows. 

1. Sort rules according to their cost, measured from ear- 
lier runs of the program. Optimize rules one by one 
from higher-cost rules. This is done to allow higher- 
cost rules enough freedom to select join structures. 
(See multiple-rule optimization, described later.) 
Before starting the optimization of each rule, the fol- 
lowing nodes are registered to the node-list of the rule: 
one-input nodes, each of which corresponds to a condi- 
tion element of the rule, and pre-calculated two-input 
nodes, which are introduced to reduce search possi- 
bilities and to increase sharing join operations. The 
details of pre-calculated two-input nodes are described 
later. 
In the process of optimizing each rule, two-input nodes 
are created by combining two nodes in the node-list. 
The created nodes are registered in the node-list if 
the same join structures have not already been regis- 
tered. The algorithm chooses newer nodes to acceler- 
ate creating a complete join structure of the rule. Con- 
straints proposed later are used to reduce the number 
of possibilities. 
After creating all possible join structures, select the 
lowest-cost complete join structure. 
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clear the rule-list; 
push all rules to the rule-Zisr, 
sort the rule-list in descending order of cost; 
for I from the first rule to the last rule of the rule-list; 

clear the node-list; 
push all one-input nodes of r to the node-list; 
let k be the number of one-input nodes; 
append precalculated two-input nodes to the node-list; 
for i from the second node to the last node of the node-list; 

forj from the first node to the i-lth node of the node-list; 
if all constraints are satisfied then do; 

create a two-input node PZ to join i and& 
calculate parameters of n; 
push n to just after the max(i,k)th node of the node-list 

end 

(p example 
(context phasel) ---- (s) 
(class-a <x> q>) ---- (a) 
(class-b <y> <z>) ---- (b) 
(class-c CZ> CW>) ---- (c) 
--> 
(make . . . . . )) 

0 creation is allowed 

0 ~~ creation is prevented 

end 
end Figure 4: Example of the connectivity constraint 

find the lowest-cost complete join structure; 
generate an optimized version of r 

end 
variables appearing in Conditions(n). The constraint pre- 
vents the creation of a two-input node to join n and m, 
if 

Figure 3: Outline of the optimization algorithm (i) Variables( n)OVariables( m)=0, and 
(ii) 3 p,q $ Conditions( n)UConditions( m) 

such that Variables( n)OVariables(p)#0, and 
4.2 Constraints for Reducing Possibilities Variables( m)nVariables( q)#S. 

The following constraints are used for reducing possible 
join structures. 

4.2.1 Minimal-Cost Constraint 

The minimal-cost constraint prevents the creation of a 
join structure whose cost is higher than that of the reg- 
istered one. More formally, let Conditions(n) be a set 
of condition elements included in the join structure of n. 
Conditions(n)={ n}, h w en n is a one-input node. The con- 
straint prevents creating n, if 

3m E node-list 
such that Conditions( n)CConditions(m), and 

In the example shown in Figure 4, the connectivity con- 
straint prevents joining a and c, because there is no shared 
variable (thus (i) is satisfied), and there remains a possi- 
bility of avoiding such a costly operation, if a and b or b 
and c are joined first (thus (ii) is satisfied). On the other 
hand, joining s and a is not prevented, though there is no 
shared variable. This is because, sooner or later, s will be 
joined with some node without a shared variable anyway 
(thus (ii) is not satisfied). 

4.2.3 Priority Constraint 

Based on the execution statistics, it may be possible to 
prioritize the one-input nodes. The priority constraint pre- 

Cost(n)>Cost(m). . ’ 

In contrast, if n is in the node-list and m is created, then 
n is removed from the node-list. The minimal-cost con- 
straint guarantees optimality, if the tree-type join topology 
is assumed. 

To take advantage of the minimal-cost constraint, it is 
important to create large and low-cost join structures in 
the early stages. In our system, two-input nodes in the 
original rule are registered as the pre-calculated nodes. Us- 
ing this technique, we can prevent creating a join structure, 
whose cost is higher than the original one. 

vents creating two-input nodes joining lower-priority nodes 
while higher-priority nodes can be joined. More formally, 
let p and q be one-input nodes, and p>q indicates that p 
has a higher priority than q. The constraint prevents the 
creation of a two-input node to join n and m, if 

3 p # Conditions( n)UConditions( m), 
3 q E Conditions(m) 
such that (i) p>q, and 

(ii) Variables( n)OVariables(p)#0, or 
Variables( n)nVariables( m)=0. 

At present, we define p>q only when Token(p)>Token(q) 

4.2.2 Connectivity Constraint 

The connectivity constraint prevents an inter-condition 
test with no shared variable, which produces a full combi- 
nation of tokens to be joined. More formally, let p and q 
be one-input nodes, and Variables(n) be a set of pattern 

and Memory(p)>Memory( q). We introducedjii) to avoid 
the situation where joining n and p is prevented by the con- 
nectivity constraint while joining n and m is prevented by 
the priority constraint. The connectivity and the priority 
constraints can significantly reduce the search possibilities, 
but sacrifice the guarantee of optimality. 
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Table 2: Effectiveness of constraints Table 1: Optimization Results 

I Number of inter-condition tests 
Condition 
elements Original Manual With 

Optimizer 

Rule 
No. 

1 21 
2 18 
3 17 
4 22 
5 21 
6 18 
7 17 

* 8 15 
9 7 

10 6 
11 17 
12 7 
13 6 

* 14 23 
. . . 

Total 
33 

Average 
14.2 

CPU time 
(Normalized) 

46432 
29548 
28548 
25513 
25513 
10322 
10322 
9966 
9830 
9278 
8566 
7656 
7544 
3160 

. . 

Total 
241329 

1 .oo 

47888 
27244 
27244 

7813 
7813 
3749 
3749 
9966 
1180 
630 

8566 
520 
408 

4616 
. . 

Total 
159517 

0.69 

22396 
494 
494 
144 
144 

3749 
3749 

12539 
1180 
630 

4640 
760 
648 

13780 
. . 

Total 
75002 

0.53 

Created 
two-input 
nodes 

179 
198 
92 

236 
94 

552 
194 
228 

99 
20 

116 
44 
22 
76 
. . 

Avera g e 
131.8 

- The cost of shared nodes is divided by the number of sharing 
rules. 

- The number of tests of marked rules is increased by optimi- 
zation. However, this does not mean the optimization failed. 
For example, Nos.1 and 14 share many nodes. The sum of the 
costs of the two rules has been decreased considerably. 

ultiple-Rule Optimization 
Sharing join operations by multiple rules reduces the total 
cost of a program. We use the following techniques to 
increase the sharing opportunities. 

1. When creating a two input-node n, we assume that 
n will be shared by all rules which contain Condi- 
tions(n). We reduce the value of Cost(n) based on 
this prediction: the cost is recalculated by dividing 
the original cost by the number of rules which can 
share the node. 

2. When optimizing each rule, sharable existing two- 
input nodes are registered in the node-list of the rule 
as pre-calculated two-input nodes. This time, costs of 
those two-input nodes are set to 0, because no cost is 
required to share existing nodes. 

Using the above techniques, multiple-rule optimization 
can be realized without an explosion of combinations. 
Rules are optimized one by one, but the result is obtained 
as if all rules are optimized at once. 

We have implemented an optimizer applicable to OPS5- 
like production systems. The optimizer reads a program 
and its execution statistics, then outputs the optimized 

Rule 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Condition 
elements 

21 
18 
17 
22 
21 
18 
17 
15 
7 
6 

17 
7 
6 
. 

Number of created two-input nodes 

Minimal-cost 

>lOOO 
>lOOO 
>lOOO 
>I000 
>lOOO 
>lOOO 
>lOOO 
>I000 

121 
22 

>lOOO 
68 
24 
. . 

Minimal-cost 
Connectivity 

680 
438 
162 
887 
139 

>lOOO 
>lOOO 

513 
99 
20 

382 
44 
22 
. 

Minimal-cost 
Connectivity 
Priority 

179 
198 

92 
236 

94 
552 
194 
228 
99 
20 

116 
44 
22 

. 

- The priority constraint is applied only when the number 
of condition elements is greater than 10. 

program. In our system, the overhead of statistics mea- 
surement is less than 5%. We apply the optimizer to a real- 
world production system program, a circuit design expert 
system currently under development at NTT Laboratories 
[Ishikawa et ad., 19871. This program consists of 107 rules, 
which generate and optimize digital circuits. In this eval- 
uation, the approximate number of WMEs representing a 
circuit is 300 to 400. 

There were two reasons why this program was selected 
as our benchmark. First, the program includes many 
large rules consisting of more than 20 condition elements. 
The program is thus not a mere toy for evaluating our 
constraint-based approach to cope with the combinatorial 
explosion. The second and main reason is that the pro- 
gram was optimized by the expert system builder himself. 
He spent two to three days optimizing it manually. 

The result of optimizing the main module of the pro- 
gram, which consists of 33 rules, is shown in Table 1. The 
total number of inter-condition tests was reduced to l/3, 
and CPU time to l/2. Perhaps the most important thing 
to note is that the optimizer produces a more efficient pro- 
gram than the one obtained by manual optimization. 

The optimization time is directly proportional to the 
square of the number of created two-input nodes. The 
effectiveness of the constraints is shown in Table 2. With- 
out the minimal-cost constraint, it is impossible to opti- 
mize rules which contain more than 10 condition elements. 
The connectivity and the priority constraints also demon- 
strate significant effects. Currently, the initial version of 
the optimizer takes somewhat more than 10 minutes on a 
Symbolics work station to optimize the circuit design pro- 
gram. For average production system programs, in which 
the number of condition elements is 5 or so, optimization 
is usually completed in a few minutes. 
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6 Related Work 

The TREAT algorithm [Miranker, 19871 optimizes join op- 
erations dynamically. The method is called seed-ordering, 
where the changed alpha-memory is considered first, and 
the order of the remaining condition elements is retained. 
Since the overhead cannot be ignored for run-time opti- 
mization, sophisticated techniques such as those described 
here cannot be applied. 

Compile-time optimization has been studied for conjunc- 
tive queries in AI and database areas [Smith et al., 1985; 
Warren, 1981; Jarke et al., 19841. Various heuristics are 
investigated to determine the best ordering of a set of con- 
juncts. The SOAR reorderer [Scales, 19861 attempts to 
directly apply those heuristics to the optimization of pro- 
duction rules. However, we found that applying them to 
production rules often fails to produce better join struc- 
tures. 

Most of the previous studies on optimizing conjunctive 
queries are based only on statistics about sizes of the WM. 
Since production systems can be seen as programs on a 
database, statistics about changes in the WM (program 
behavior of production systems) should also be considered. 
This makes optimization of production rules more complex 
than that of conjunctive queries. 

The connectivity and the priority constraints proposed 
in this paper are respectively based on the connectivity 
and the cheapest-first heuristics described in [Smith et al., 
19851. However, the program behavior forces changes in 
the usage of those heuristics. In previous works, the heuris- 
tics are used to directly produce semi-optimal queries. In 
this paper, we modify the heuristics to be a slightly weaker 
or less limiting, and use them as constraints to reduce the 
possibilities. 

Many papers have also been published on the subject of 
parallel matching [Gupta et ub., 19871 and parallel firing 
[Ishida et al., 19851 of production system programs. Since 
many of these studies have assumed the RETE pattern 
matching, the optimization algorithm proposed here is also 
effective in the parallel execution environment. 

7 Conclusion 

We have explored an optimization algorithm for produc- 
tion system programs. Applying the algorithm to a design 
expert system demonstrates that the algorithm produces 
a better program than one optimized by expert system 
builders. The complexity of optimization increases when 
the number of rules and working memory elements be- 
comes larger. We believe the algorithm will release both 
expert system builders and users from time-consuming op- 
timization tasks. 
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