
A Circumscriptive Theorem Prover:
Preliminary Report*

Matthew L. Ginsberg
Computer Science Department

Stanford University
Stanford, California 94305

Abstract

We discuss the application of an assumption-
based truth maintenance system to the construc-
tion of a circumscriptive theorem prover, show-
ing that the connection discovered by Reiter and
de Kleer between assumption-based truth main-
tenance and prime implicants relates to the no-
tions of minimality appearing in nonmonotonic
reasoning.
The ideas we present have been implemented, and
the resulting system is applied to the canonical
birds flying example and to the Yale shooting
problem. In both cases, the implementation re-
turns the circumscriptively correct answer.

1 Introduction
Circumscription [McCarthy, 1980; McCarthy, 19861 is
probably the most thoroughly investigated of all of the ap-
proaches to nonmonotonic reasoning. Unfortunately, these
investigations have not led to the development of effective
algorithms for determining whether or not some potential
conclusion follows from the circumscription axiom. There
have been several attempts at this [Lifschitz, 1985; Prey-
musinski, 19861, but none has been completely satisfactory.

This paper begins to address these difficulties. The ap-
proach we will be taking is the result of combining a variety
of ideas relating to nonmonotonic inference:

1. The formalization of the connection between circum-
scription and minimal models. This appears to be due
to Lifschitz [Lifschitz, 19851, and is also present in Mc-
Carthy’s original paper [McCarthy, 19801 and recent
work of Shoham’s [Shoham, 19871.

2. A description of minimal models in terms of specific
formulas describing them. This idea appears in Gel-
fond et. al’s idea of a free for negation sentence [Gel-
fond et al., 19861, and in the concept of a prime im-
p&ant discussed by Reiter and de Kleer [Reiter and
de Kleer, 19871.

3. The observation that an assumption-based truth
maintenance system (ATMS) [de Kleer, 19861 can be
used to generate the formulae mentioned above. This
observation appears in both [Reiter and de Kleer,
19871 and [Ginsberg, 19881.

*This work has been supported by DARPA under grant
number N00039-86-C-0033, by ONR under grant number
N00014-81-K-0004, byNSF undergrantnumber DCR-8620059,
by the Rockwell Palo Alto Laboratory, and by General
Dynamics.

4. The construction of a backward-chaining ATMS and
the implementation of a backward-chaining circum-
scriptive theorem prover using it. Construction of
a backward-chaining ATMS is discussed in [Ginsberg,
19881, and examples are presented there as-well. -

The subsequent sections of this paper consider each of
these points in turn. In the next section, Section 2, we
discuss the connection between the circumscription axiom
and constructions involving minimal models.

In Section 3, we go on toshow that these minimal mod-
els can be described in terms of a notion we will refer to as
confirmation. Loosely speaking, a sentence is confirmed if
it would follow from the closed world assumption [Reiter,
19781 applied to some predicate. We will discuss circum-
scription in terms of sentences whose negations are not
confirmed.

Next, in Section 4, we describe the relationship between
ATMS'S and confirmation. The description we will give of
circumscription involves the idea of a “weakest” confirming
sentence; this is closely related to the notion of a prime
implicant appearing in [Reiter and de Kleer, 19871.

The implementation itself is discussed in Section 5.
Here, we argue that the notion of a bilattice [Ginsberg,
19881 can be used to construct a backward-chaining ATMS
of the sort needed by a backward-chaining circumscriptive
theorem prover. Finally, we present examples of the prover
in operation in Section 6.

2 Circumscription and models
As remarked in the introduction, the description of cir-
cumscription that we will be using is one based on models,
as opposed to the usual circumscription axiom appearing
in [McCarthy, 19861.

Suppose, then, that D is some finite set of defaults; one
might, for example, take D to be the set of all propositions
of the form lp(z), where p is a predicate being circum-
scribed and x is an instantiation of p’s argument. Given
two models Ml and Mz, we will write Mi <D Mz just in
case the set of elements of D that hold in Mr is a subset of
the set of elements of D that hold in Ms. Given a collec-
tion of models, we will refer to the ones that are maximal
under the partial order <D as D-maxima2 elements of the
collection. The following result is now an easy consequence
of Proposition 1 of [Lifschitz, 19851:

Proposition 2.1 Let T be a set of sentences without func-
tion symbols, such that T incbudes domain closure and
uniqueness of names assumptions. Let p be a predicate,
and let D be the set of all propositions of the form -p(x),
where x is a ground instantiation of p’s argument. Now

470 Knowledge Representation

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

for any sentence q, q is a consequence of circumscribing p
in T while abbowing all other predicates to vary if and only
if q holds in all D-maximab models of T.

The approach we will take will be to work directly from
the sets T and D, as opposed to working from the circum-
scription axiom itself.

Before proceeding, however, we should spend some time
discussing Proposition 2.1. The assumptions made regard-
ing T are essentially those needed to ensure both that we
can enumerate all possible instantiations of p using con-
stant symbols appearing in the original theory, and that
these instantiations will be nonequivalent; these are quite
strong assumptions.’ It appears that both Proposition 2.1
and our implementation based on it will be valid in some-
what wider circumstances; this issue is currently under
investigation by Gelfond and Lifschitz [Gelfond and Lifs-
chitz].

Even in the general case where the proposition may fail,
however, the argument can be made that an algorithm to
determine whether or not some sentence q holds in all D-
maximal models of T is of comparable interest to one that
determines whether or not q holds after circumscribing p in
T: Recall that the original motivation for the circumscrip-
tion axiom was to help characterize precisely the notion of
predicate minimization appearing in the proposition.

Confirmation
Technically, the reason we will work with Proposition 2.1
instead of the circumscription axiom itself is that it is pos-
sible to recast the proposition in a somewhat more useful
form. We need the following definition:

Definition 3.1 Let D be a set of sentences. We will say
that a sentence p is dnf with respect to D if p is of the
form

VAOb
i j

for some collection of dij E D. In other words,
disjunction of conjunctions of elements of D.

p is the

Now also fix a set T. Then we will say that some sen-
tence q is confirmed by p for D and T if the following
conditions hold:

1. T U (p) is satisfiable,
2. Tub) l=qr and
3. p is dnf with respect to D.

If no ambiguity is possible, we wibl simply say that q is
confirmed by p. If there is no p that confirms q, we will
say that q is unconfirmed. If p confirms 74, we will say
that p disconfirms q.

The reason the above
the following result:2

definitions are useful is because of

Proposition 3.2 Let T and D be sets of sentences, and
q a sentence. Then q holds in all D-maximal models of T
if and only if there is some p that confirms q such that up
is unconfirmed.

‘1 am indebted to Vladimir Lifschitz to providing me with
a sharp formulation of them (personal communication).

2Proofs can be found in the full paper.

It is clear from this result and Proposition 2.1 that, given
information about confirmation, we can determine whether
or not some query q follows from a given circumscription.

4 Confirmation and truth
maintenance

In order to use Proposition 3.2 effectively, we need some
way to determine the various sentences that confirm some
query 4.

Suppose we consider the collection of all sentences that
confirm q. Now it is fairly clear that the disjunction of all
of these sentences also confirms q, and that the negation of
this disjunction will be unconfirmed if and only if q satisfies
the conditions of Proposition 3.2. Thus we can determine
whether or not q holds in all D-maximal models of T by
considering only the weakest of the sentences that confirm
it.

This problem has in fact already been addressed in the
AI literature. In [Reiter and de Kleer, 19871, Reiter and
de Kleer show that assumption-based truth maintenance
systems (ATMS'S) perform just this sort of calculation; sim-
ilar remarks can be found in [Ginsberg, 19881.

Essentially, an ATMS takes a proposition such as q and
determines the ‘environment’ in which q holds. One possi-
ble representation for this environment is as a list of con-
texts, where each context is described by a list of assump-
tions that must hold in it. If we take the elements of D
as our possible assumptions, we see that the ATMS envi-
ronments correspond to our dnf formulae. Since the ATMS
is looking for a minimally specific environment in which q
holds, we can think of it as looking for a weakest sentence
p that confirms q. Similarly, the ATMS label assigned to lp
will tell us whether or not lp is unconfirmed.

5 mpllementation
There are some subtleties involved in actually implement-
ing these ideas. Firstly, a (presumably backward-chaining)
circumscriptive theorem prover will rely on a backward-
chaining ATMS; de Kleer’s published work [de Kleer,
19861 is based on forward-chaining methods. In addition,
de Kleer’s work only describes an ATMS for propositional
calculus; a circumscriptive theorem prover will need to
work with a fully first-order version. We now turn to the
problem of constructing an ATMS with these properties.

5.1 Backward chaining
Construction of a backward chaining ATMS is discussed
in [Ginsberg, 19881. 3 The essential idea is to construct
a bilattice that corresponds to deKleer’s construction, and
to then use the general-purpose algorithms described in
[Ginsberg, 19881 to produce a backward chainer that uses
this bilattice.

A description of the ATMS bilattice can also be found
in [Ginsberg, 19881. This bilattice is constructed using the
fact that the environments described in the last section can
be partially ordered by generality.

3Reiter and de Kleer describe this as the “interpreted ap-
proach” to truth maintenance in [Reiter and de Kleer, 19871.
No algorithm is presented, however.

Ginsberg 47 1

It is clear that the contexts themselves, viewed simply than restating the proposition involved. Thus an element
as subsets of the set, of all possible assumptions, can be of any particular context, will generally have the form
partially ordered by set inclusion. Thus if c = cl A . . . A c,
and d = dl A . . . A d, are two contexts, we can take c 2 d (P - A>

to mean that the set of ci’s contains the set of d3’s as a where p is an assumption (i.e., an element of 0) and CT is
subset. In other words, c < d if the context c is bess general a binding list indicating which variables in p are bound in
than the context d. the context. If D consists of the single sentence schema

Using this partial order, we can construct a partial order lab(z), a context depending on lab(a) and lab(b) would

on the environments themselves, saying that one environ- be written as:

ment el is less general than another e2 if every context in {(lab(z) . {z = a)), (lab(z) . (z = b})).
el is less general than same context in e2. If every context
in el contains some context in e2 as a subset, then the

In the LISP-like notation to be used in the next section, we

environment el is less general than the environment, e2.
would write:

The points in bilattices corresponding to ATMS’S consist ((lab(z) . (z = a))(lab(z) . {a: = b})).

of pairs of environments (el, e2). If a sentence p has truth Environments will be written as lists of contexts.
value (el, e2), this means that el is the most general envi-
ronment in which p is known to hold, and e2 is the most

Using this notation, we see that if the value assigned

general environment in which up is known to hold.
to Q after computing the bilattice closure is (e, f), where
e = {cl,...,%} and

5.2 First-order ATMS’s
Next, we discuss the construction of a first-order ATMS,
as opposed to a propositional one. In general, we need to
consider the possibility that. the sentences appearing in the
various ATMS contexts be quantified in some way.

We will assume that this quantification can be handled
implicitly, as in PROLOG [Clocksin and Mellish, 19811. Ex-
istential quantification will be handled via Skolemization,
and universal quantification will be handled by assuming
that any free variables appearing in the database are uni-
versally quantified.4

We will now construct contexts in a fashion quite sim-
ilar to that of the last section; from these contexts, we
construct environments exactly as before. It follows that
in order to extend our propositional ATMS to a first-order
one, we need to extend the partial order we previously de-
fined for contexts. Recall that this partial order defined a
conjunctive context c to be less general than a context d
just in case every sentence in c was also in d.

In the first-order case, we need to modify the definition
only slightly, saying that a context c is less general than
another context d if and only if, for each sentence c; ap-
pearing in c, there is some sentence dj appearing in d such
that dj is an instantiation of c;.

Thus, for example, the context. consisting of the single
sentence p(z) is less general than the context consisting of
the sentence p(a), where z is a variable and a is a constant.
This is as it should be, since p(a) surely holds if Vz.p(z)
does.

In what follows, we will represent contexts using propo-
sitions and binding lists, so that the context consisting of
the sentence p(a) might well be represented as

Ci = ((dij - aij)}l
then the weakest sentence confirming 4 is

i j

6 Examples
In this section, we present three examples of the imple-
mented system at work: the usual birds flying example, a
simple example involving disjunction, and the Yale shoot-
ing problem. All of the ‘output’ shown is as actually pro-
duced by the program, except for trivial textual modifica-
tions. (For example, the database is maintained in disjunc-
tive normal form, but is displayed below using a PROLOG-
like representation.)

6.1 Birds flying
Here is the database for the usual birds flying example:

Bird(Tweety).
Ostrich(Fred).
Flies(x) :- Bird(x),Not(Ab(x)).
Bird(x) :- Ostrich(x).
Not(Flies(x)) :- Ostrich(x).
Not(Ab(x)). P4

Tweety is a bird, and Fred is an ostrich. Birds fly unless
they are abnormal; ostriches are birds that don’t fly. By
default, nothing is abnormal. The ~4 labelling the state-
ment that nothing is abnormal serves both to indicate that
this is a default rule, and to give the ATMS a label for this
rule.

We now ask the inference engine to find something that
flies by giving it the query Flies(x). Here is the result:

Flies(x)?
Invoking multivalued prover on Flies(x).

The reason we do this is that we will frequently have Value returned is:

assigned designators to the universally quantified propo- binding list: (x = Tweety)

sitions, and this representation is slightly more compact truth value: (((P4 . <x = Tweety))))
Checking circumscriptive context for truth

4Ray Reiter has pointed out to me that not all first-order value (((P4 . (x = Tweety)))).
theories can be written in this fashion. It is not clear how Checking confirmation for Not(Ab(Tweety)).
difficult it will be to generalize the following construction to Negation is unconfirmed.
handle these situations. Success! x = Tweety.

472 Knowledge Representation

The prover begins by invoking a multivalued prover on
the query Flies(x) [Ginsberg, 19881. The multivalued
prover succeeds, since it. can find a proof of Flies(x) for x
bound to Tweety. The truth value returned contains jus-
tification information. In this case, the proof that Tweety
can fly used the proposition ~4 with x bound to Tweety.

This means that Flies(Tweety) is confirmed by
Not(Ab(Tweety)), so the prover next checks to see if it
can find some confirmation for the negation of this state-
ment,. Since Not (Not (Ab(Tweety) > > is unconfirmed, the
prover succeeds, returning the answer z = Tweety.

Alternatively, we can look for something that doesn’t fly:

Not(Flies(x))?
Invoking multivalued prover on Not(Flies(x)).
Value returned is:

binding list: (x = Fred)
truth value : TRUE

Checking circumscriptive context for truth
value TRUE.

Negation is unconfirmed.
Success ! x = Fred.

The prover is able to show that Fred cannot fly without
using any assumptions at all (recall that only the default
rule about abnormality is a possible assumption; the other
database facts are accepted unconditionally). Since TRUE
cannot be disconfirmed, the prover informs us that Fred
cannot fly.

6.2 A disjunctive example
We next turn to an example from [McCarthy, 19801:

Block(a)
Not (Block

-- Not(B1 ix)). .ock(b)
Pi5

We are told that either a is a block or b is, and circum-
scribe the predicate block. The result of the circumscrip-
tion should be that either a is the only block, or b is. It
follows from this that

l[block(a) A block(b)]

should be circumscriptively valid:

Not(And(Block(a),Block(b)))?
Invoking multivalued prover on

Not(And(Block(a),Block(b))).
Value returned is:

binding list: 0
truth value : (((Pl5 . <x = a))>

((Pl5 . Cx = b>)))
Checking circumscriptive context for truth

value
(((P15 . cx = a)>> ((PI5 . <x = b>))).

Checking confirmation for
Or(Not (Block(a) > ,Not (Block(b) > > .

Negation is unconfirmed.
Success !

This example is slightly more difficult than the preceding
one. The multivalued prover manages to prove the query
by using either ~15 with x bound to a, or with x bound to
b. Thus the query is confirmed by:

p 5 lblock(a) V Tblock(b).

The negation of p is block(u) Ablock(and this appears
to itself be confirmed by ~15 applied to both of a and b
(since applying PlS to a allows us to conclude that b is a
block, and similarly for applying it to b). Thus the negation
of p is apparently confirmed by:

lblock(a) A lblock(b).

This sentence is inconsistent, with our theory, however,
since we are assuming that either a or b is a block. Thus up
is in fact unconfirmed, and the prover returns with success.

6.3 The Yale shooting
Finally, we discuss the well known Yale shooting example
from [Hanks and McDermott, 19871:

Not(Holds(alive,Do(shoot,s))) :-
Holds(loaded,s).

Holds(p,Do(a,s)) :-
Holds(p,s;, Not(Ab(a,p,s)).

Holds (loaded,sO) .
Holds(alive,sO).
Not(Ab(a,p,s)). P23

The example involves a gun and an intended victim (gen-
erally named Fred). If the gun is loaded in a state s, then
Fred will not be alive in the state resulting from firing the
gun. The second axiom is a frame axiom, telling us that.
a proposition p will hold after performing an action a in a
state s if p held before performing the action, unless the
triple (a, p, s) is abnormal. The gun is loaded and Fred is
alive in the initial state so. Finally, actions are (by default)
not abnormal.

The question is this: If we wait and then fire the gun,
do we kill Fred? Surprisingly, the answer is no, since there
are two different ways in which we might apply the default
rules. In the first (the intended one), waiting has no effect,
and the action of firing the gun is abnormal in the state
Do(wait ,sO) because Fred becomes not alive. The second
possibility is one in which the waiting action is abnormal
and the gun becomes mysteriously unloaded.

If we ask the circumscriptive theorem prover whether
Fred is alive after we wait and fire the gun, here is the
result:

Holds(alive,Do(shoot,Do(wait,sO)))?
Invoking multivalued prover on

Holds(alive,Do(shoot,Do(wait,sO))).
Value returned is:

binding list: 0
truth value:

(((P23 . (a = wait, p = alive, s = SO>)
(P23 . (a = shoot, p = alive,

S = Do(wait,sO)))>>
Checking circumscriptive context for truth

value
(((P23 . (a = wait, p = alive, s = SO))

(P23 . <a = shoot, p = alive,
S = Do(Wait,sO>)>)>.

Checking confirmation for
And(Not(Ab(wait,alive,sO)),

Not(Ab(shoot,alive,Do(wait,sO)))).
Negation confirmed based on truth value

(((P23 . (a = wait, p = loaded, s=sO)))).
Fails.

Ginsberg 473

The system first notes that it can prove that Fred is
alive simply by applying the frame axiom twice, first to
conclude that he is alive after the waiting action, and then
to conclude that he remains alive after the shooting action.
Thus his being alive is confirmed by:

lab(aait,alive,so) A lab(shoot, alive,do(wait,so)).

The negation of this sentence is confirmed by

lab(wait,loaded,so),

however. If wait is not abnormal in SO, then the gun will
be loaded after the waiting action, and Fred will necessarily
be dead after the gun is fired. Since there is no proof of
the negation of this sentence, the confirming sentence for
the original query is itself disconfirmed, and the query does
not follow from the circumscription.

Alternatively, we can try to show that Fred is not alive
after the sequence of actions:

Not(Holds(alive,Do(shoot,Do(wait,sO))))?
Invoking multivalued prover on

Not(Holds(alive,Do(shoot,Do(wait,sO)))).
Value returned is:

binding list: <)
truth value:

(((P23 . <a = wait, p = loaded, s = SO))))
Checking circumscriptive context for truth

value
(((P23 . <a = wait, p = loaded, s = ~03))).

Checking confirmation for
Not(Ab(wait,loaded,sO)).

Negation confirmed based on truth value
(((P23 . <a = wait, p = alive, s = SO))

(P23 . {a = shoot, p = alive,
s = Do(wait,sO>>>>>.

Fails.

Now a proof is found indicating that Fred will not, be
alive after the gun is fired, provided that waiting did not
cause it to become unloaded. The negation of the confirm-
ing fact is ab(wait, loaded, SO), but this follows from the
conjunction

lab(wait,alive,so) A lab(shoot,alive,do(wait,so)).

Since the negation of
the confirmation of

the above sentence cannot be proven,

lholds(alive,do(shoot, do(wait,so)))

is disconfirmed, and the prover fails.
In all of these examples, the prover returns the correct

circumscriptive answer. In addition, the computational
procedure used is reasonably efficient. The Yale shooting
problem, for example, is solved in approximately one sec-
ond on a Symbolics 3600.

Acknowledgement
I would like to thank Johan de Kleer, Benjamin Grosof,
John McCarthy, Karen Myers, Ray Reiter and David
Smith for many useful discussions and suggestions. I am
especially grateful to Vladimir Lifschitz for the assistance
he has given me in sharpening the results of Section 2, and
in directing me to Gelfond’s paper [Gelfond et al., 19861.

References
[Clocksin and Mellish, 1981: W. F. Clocksin and C. S.

Hellish. Programming 5 7 .?rolcg. Springer-Verlag,
Berlin, 1981.

[de Kleer, 19861 Johan de Kleer. An assumption-based
truth maintenance system. Artificial Intelligence,
28:127-162, 1986.

[Gelfond and Lifschitz] Michael Gelfond and Vladimir Lif-
schitz. Compiling circumscriptive theories into logic
programs. In preparation.

[Gelfond et al., 19861 Michael Gelfond, Halina Przymusin-
ska, and Teodor Przymusinski. The extended closed
world assumption and its relationship to parallel
circumscription. In Proceedings of ACM SIGACT-
SIGMOD Symposium on Principles of Database Sys-
tems, pages 133-139, 1986.

[Ginsberg, 19881 Matthew L. Ginsberg. Multivalued log-
its: A uniform approach to reasoning in artificial in-
telligence. Computational Intelligence, 4, 1988.

[Hanks and McDermott, 19871 Steve Hanks and Drew
McDermott. Nonmonotonic logics and temporal pro-
jection. Artificial Intelligence, 33:379-412, 1987.

[Lifschitz, 19851 Vladimir Lifschitz. Computing circum-
scription. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, pages 121-
127, 1985.

[McCarthy, 19801 John McCarthy. Circumscription - a
form of non-monotonic reasoning. Artificiab Intebii-
gence, 13:27-39, 1980.

[McCarthy, 19861 John McCarthy. Applications of cir-
cumscription to formalizing common sense knowledge.
Artificial Intelligence, 28:89-116, 1986.

[Przymusinski, 19861 Teodor C. Przymusinski. Query-
answering in circumscriptive and closed-world theo-
ries. In Proceedings of the Fifth National Conference
on Artificial Intelligence, pages 186-190, 1986.

[Reiter, 19781 Ray Reiter. On closed world data bases. In
H. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 119-140, Plenum, New York, 1978.

[Reiter and de Kleer, 19871 Raymond Reiter and Johan
de Kleer. Foundations of assumption-based truth
maintenance systems: Preliminary report. In Pro-
ceedings of the Sixth National Conference on Artificial
Intelligence, pages 183-188, 1987.

[Shoham, 19871 Yoav Shoham. A semantical approach to
nonmonotonic logics. In Proceedings of the Tenth
International Joint Conference on Artijkiab Intel&
gence, pages 388-393, 1987.

474 Knowledge Representation

