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planning has 
Table 1: Seven Possible Values of Interval Relations and 
their Inverses 

concentrated on making desired facts (goals) be- 
come true, with less attention on preventing 
undesired facts (negative goals) from becoming 
true. This document presents preliminary work 
towards a temporal-based model of prevention, 
based on Allen and Koomen’s temporal plan- 
ner. The temporal model permits more expres- 
sive prevention problems and a more powerful 
prevention-oriented planner. Negative goals are 
temporally constrained-for instance, we can di- 
rect the planner to prevent a fact F from occur- 
ring before, after, or during a specific goal, be- 
tween two temporally separated goals, etc. The 
planner can find solutions which allow F to be- 
come true at any time outside of the specified 
interval or which never allow F to become true. 
The temporal model permits the idea of delay- 
ing F after the interval, as well as terminating it 
before the interval. This paper describes a set 
of prevention techniques which have been imple- 
mented in a temporal planner and discusses nec- 
essary requirements for a more complete preven- 
tive planner. 

I ntroduction 
Research in domain independent planning has concen- 
trated on making desired facts become true, with less at- 
tention on preventing undesired facts from becoming true. 
[McDermott, 781 formulated prevention as a policy influ- 
encing the achievement of a goal, while [Fikes, Hart & 
Nilsson, 721 proposed extending STRIPS to allow nega- 
tive goals solvable through an operator’s delete list. This 
document presents preliminary work towards a temporal- 
based model of prevention, based on the temporal planner 
of [Allen and Koomen, 831. The temporal model permits 
more expressive prevention problems and a more powerful 
prevention-oriented planner. Negative goals are tempo- 
rally constrained-for instance, we can direct the planner 
to prevent a fact F from occurring before, after, or during a 
specific goal, between two temporally separated goals, etc. 
The planner can find solutions which allow F to become 
true at any time outside of the specified interval or which 
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never allow F to become true. (Non-temporal planners 
are restricted to the latter set of solutions.) The temporal 
model permits the idea of delaying F after the interval, as 
well as terminating it before the interval. 

Section 2 overviews the temporal planner for which we 
have formulated the prevention techniques. (The planner, 
prevention techniques, and a set of examples are imple- 
mented in Common Lisp and are publically available.) Sec- 
tion 3 specifies how prevention problems are posed in our 
planner. Section 4 describes the criteria for detecting that 
something must be done to prevent some undesired fact, 
while Section 5 presents a set of prevention techniques. 
Section 6 describes the search strategy which employs these 
techniques. 

oral 

Allen’s temporal logic defines an interval as a discrete por- 
tion of time, often corresponding to the period of time over 
which a fact holds. The temporal relation between any two 
intervals is a disjunction of the thirteen possible values 
given in Table 1. For instance, the logic might know that 
one interval can occur either before, after, or overlapping 
another interval, as shown in Figure 1. 

Throughout this paper, pattern variables are denoted by 
symbols starting with ?. Temporal intervals are denoted 
by symbols starting with $. Temporal relations are written 
as lists; for example, if $INTERVAL~ can occur before, after, 
or overlapping $INTERVAL2, we write 

UNTERVALI (:< :> ~0) $INTERVAL~. 

The logic maintains a transitive closure over tempo- 
ral relations. For instance, $INTERVALl (:=> $INTERVALZ 
and $INTERVALI (:< :=> $INTERVAL3 implies $INTERVALZ 
(:< :=> $INTERVALB. 

[Allen and Koomen, 831’s planner temporally qualifies 
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I---$INTERVAL~---I I---$INTERVAL2---I 
LOCATION) for all ?SOME-POT, (AT POT~ LOCATION) must be 
prevented. 

I---$INTERVAL2---I 

I---UNTERVALI---I 
I---$INTERVAL2---I 

Figure 1: The Temporal Relation $INTERVALl (:< :> 
:0) $INTERVAL2. 

the given and goal facts of each partial plan with inter- 
vals and a set of temporal relations among them. We have 
extended the planner to handle domain-dependent, tempo- 
rally qualified causal rules for modeling complex (interact- 
ing) operator effects. For instance, a rule might assert some 
condition when two applied operators overlap in time. A 
rule’s antecedents are comprised of a set of given facts and 
temporal conditions which must hold among them. Its 
consequents are a set of new given facts and temporal con- 
straints among antecedents and consequents. 

3 revention efinition 
For the purposes of this paper, prevention is the process 
of planning for goals while keeping undesired facts from 
holding over specified time intervals. Problem descriptions 
include prevention specifications - pairs of prevention uni- 
fication patterns, -their time intervals, and temporal con- 
straints on these intervals. Pattern variables are univer- 
sally quantified. For instance, suppose our problem de- 
scription includes a prevention specification 

(ON A TANYTHING) $A-NOT-ON-ANYTHING, 

and temporal constraints positioning $A-NOT-ON-ANYTHING 
with respect to intervals of given and goal facts. The plan- 
ner solves the problem, preventing any fact unifying with 
(ON A ?ANYTHING) from temporally intersecting 
$A-NOT-ON-ANYTHING. When such intersections or violations 
are detected at a search node (using the criteria described 
in Section 4), our planner backtracks and uses the tech- 
niques presented in Section 5 to prevent the violation. 

4 etecting Prevention 
Violat ions 

A fact of a given search node violates a prevention speci- 
fication if it passes two tests. First, the fact must unify 
with the prevention pattern with none of its variables 
being bound to constants in the pattern (though vari- 
ables in the pattern can be bound to constants of the 
fact). For instance, (AT ?SOME-POT LOCATION) tests nega- 
tive against pattern (AT POTI LOCATION), while (AT POTI 
LOCATION) tests positive against pattern (AT ?SOME-POT 
LOCATION). Clearly, when preventing (AT POT1 LOCATION), 
we can not assume that (AT ?SOME-POT LOCATION) should 
b e prevented since we do not know whether ?SOME-POT 
refers to POTl. Contrarily, to prevent (AT ?SOME-POT 

The second test for detecting violations depends on 
whether the search node is a partial or finished plan. For 
partial plans, the fact’s interval must definitely intersect 
the prevention interval, meaning their temporal relation 
is a subset of (:S :SI :F :FI :D :DI :0 :01 :=>. For fin- 
ished plans, the fact’s interval must possibly intersect the 
prevention interval, meaning their temporal relation has a 
non-zero intersection with (:S :SI :F :FI :D :DI :0 :01 
: =>. The distinction is important. If a prevention violation 
is possible (but not definite) in a partial plan, acting to cor- 
rect the violation loses generality, since the final solution 
might involve a combination of operators and constraints 
which make the violation impossible. In a finished plan, 
no further constraints will be added, so it is reasonable to 
prevent a possible violation. 

5 revent ion Techniques 

In order to retain completeness, a planner searches every 
possible way of solving a goal through applicable opera- 
tors. Likewise, when preventing a fact from intersecting 
an interval, our planner attempts to retain completeness 
by searching all possible ways it knows of accomplishing 
the prevention. While our prevention techniques are not 
complete, they work in many situations. The techniques 
are described in the following three sections. In a nutshell, 
we prevent a fact from int,ersecting an interval by either 
terminat,ing it before the interval (Section 5.1), delaying it 
past the interval (Section 5.2), or preventing it from being 
asserted as a rule consequent (Section 5.3). 

5.1 Preventing via Termination 
This section describes three techniques for preventing a 
fact’s interval from intersecting another interval by con- 
straining (terminating) its endpoint such that the fact is 
before ( : 0 or meets ( : M) the interval. 

Termination of Rule Antecedents If the fact to be 
terminated is the consequent of a rule, we can indi- 
rectly terminate it before or meeting (:< :MI) the preven- 
tion interval by terminating one of the rule’s antecedents. 
The technique can only be applied to antecedents which 
terminate the consequent, meaning $ANTECEDENT (:> :MI 
:SI :F :FI :DI :01 :=> $CONSEQUENT holds. This t,empo- 
ral condition says that $ANTECEDENT'S endpoint does not 
occur sooner than $CONSEQUENT'S endpoint. We assume 
that by ending the antecedent sooner, the consequent 
is ended sooner. Under this definition, the constraint 
SANTECEDENT (3 :M) $SOME-INTERVAL results in the con- 
straint $CONSEQUENT (:< :M) $SOME-INTERVAL, by transitiv- 
ity. Consider the following rule: 

Antecedents: 
(HEAT-PATH 'src ?dst) $heat-path, 
(> (TEMPERATURE kc) 

(TEMPERATURE ?dst)) $temp-difference 
Antecedent Temporal Conditions: 

There exists $heat-flow such that 
$heat-path (:SI :FI :DI :=> $heat-flow and 
$temp-difference (:SI :FI :DI :=> $heat-flow 

Consequents: 
(HEAT-FLOW ?S~C Tdst > $heat-flow 
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Since $HEAT-PATH ( : s1 : FI : Dr :=> SHEAT-FLOW meets 
the termination criteria, we can terminate SHEAT-FLOW be- 
fore some interval by terminating $HEAT-PATH before that 
interval. 

Determining which antecedenis of a rlule can terminate 
which consequents is a difficult problem which we’ve only 
partially solved. Since a rule may have implicit consequent 
temporal constraints inferable through transitivity, we take 
the transitive closure of rule constraints before checking 
for the termination condition ( : > :MI : SI :F : FI : DI : 01 
: =>. This is still insufficient, since sets of interacting rules 
in a domain can have implicit temporal constraints not 
apparent when examining each rule’s local temporal con- 
straints. 

We also make several simplified assumptions. First, we 
assume that one can consistently terminate a consequent 
by terminating only one of the antecedents. As a counter 
example, consider the following rule: 

Antecedents: A $A, B $B 
Antecedent Temporal Conditions: $A (:=> $B 
Consequents: C $A 

The rule is triggered when two facts A and B are tempo- 
rally equal. Under these circumst.ances, C is asserted over 
A’s interval. Since the consequent is temporally equal to 
both antecedents, our definition says it can be terminated 
by terminating either antecedent. However, it is not gen- 
erally true that terminating $A necessarily causes a cor- 
responding termination of $B and vice versa. We would 
expect to have to find a means of terminating both in- 
tervals in a coordinated manner such that their temporal 
relation value ( : => is maintained. 

Another assumption is that intervals do not have fixed 
durations. If an antecedent were to meet a consequent and 
the conseqluent were known to hold over a fixed duration, 
terminating the antecedent would cause the consequent to 
terminate sooner. 

When terminating a consequent by terminating one of 
its antecedents, we can apply any of the three methods 
described in this section. For instance, we can terminate 
a consequent by terminating one of its antecedent’s an- 
tecedents. 

Unfortunately, our approach misses some problem solu- 
tions through overconstraint. The ideal approach would 
terminate the antecedent as late as possible such that the 
consequent meets or occurs before the prevention interval, 
without necessarily asserting (:< :M) from antecedent to 
the prevention interval. Such an implementation probably 
requires a more expressive temporal logic with a notion of 
metric durations, such as [Dean & McDermott, 871. Our 
temporal logic does not give us a way of expressing what 
changes to the antecedent’s endpoint cause the consequent 
to miss the prevention interval. For instance, shortening 
an antecedent by two minutes might cause a consequent 
to just miss the- prevention interval, without having the 
antecedent entirely miss the prevention interval. 

~OBJECT ?SURFACE), which meets effect (HOLDING ?OBJECT), 
which meets effect (PUTDOWN ~OBJECT ?NEW-SURFACE), and 
it could likewise control the endpoint of the effects. Other 
operators might not be able to control such endpoints- 
for instance, a doctor can “bring a patient back to life,” 
but that act does not control how long the patient lives. 
We provide such control as a user-definable parameter in 
operator definitions. 

The ability to constrain applied operators allows us to 
solve the following prevention problem. Suppose our do- 
main has the previous MOVE operator. Our problem spec- 
ifies given (ON A C) $ON-AC, goal (ON A B) $ON-AB, preven- 
tion specification (HOLDING ?x) $N0T-HOLDING-ANYTHING, 
and the following constraints: 

SON-AC (: <) 
$N~T-HOLDING 

$N0T-HOLDING-ANYTHING, 
-ANYTHING (: <> $ON-AB 

Sometime between (ON A C> and (ON A B), there is an in- 
terval over which we do not want to be holding anything 
(but we could be picking up things or putting down things). 
The goal (ON A B) is solved by applying MOVE, introduc- 
ing effect (HOLDING A) which can possibly intersect 
$NOT-HOLDING-ANYTHING. To prevent the intersection, we 
constrain the endpoint of (HOLDING 7~) to occur before or 
meeting $NOT-HOLDING-ANYTHING. Figure 2 shows the resul- 
tant plan and one set of the possible temporal constraints. 

(CLEAR A) p clear-a-mpt@ clear-after 

(CLEAR B) 
(CLERR C) 
(HOLDING A) 
(MOUE A C B) I 

$moueQ 
I 

(ON A B) Son-a-b-qoalQ 1 

(ON A C) on-a-c-in1 0 

(PICKUP R C) $Dlckyp-Ob-from@ 
(PUTDOWN A B) putdown-obrtoQ 

jOAL-STRTE poalptateQ 

INITIAL-STATE *mltfal-stateQ 

/qOT-HOLDING pot-tpldmg-anything@ 

Figure 2: Plan to move A, preventing HOLDING during 
$NOT-HOLDING-ANYTHING 

Termination by Constraining an Applied Operator 

‘Termination by Applying an Operator The final 
technique for terminating a fact before or meeting some 
interval is to apply an operator. The operator must have a 

If the fact to be terminated was a precondition or effect precondition unifying with the fact and must be defined to 
of an applied operator and the operator has temporal con- have control over the precondition’s endpoint, permitting 
trol over its endpoint, we can simply assert the constraint us to assert the constraint. For instance, the blocksworld 
that the fact is before or meets the prevention interval. MOVE operator discussed above could be applied to ter- 
For instance, a simple blocksworld MOVE operator would minate any fact unifying with precondition (ON ?OBJECT 
be able to control the endpoint of its precondition (ON ‘SURFACE) by moving TOBJECT to some other surface. (The 
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MOVE operator’s definition would specify that it has con- 
trol over the interval endpoint of the precondition.) This 
technique is similar to what [Fikes, Hart & Nilsson, 721 
formulated for STRIPS, with endpoint controllable pre- 
conditions instead of delete lists. 

5.2 Preventing via Delay 
This section presents three techniques for preventing a fact 
from intersecting an interval by constraining (delaying) its 
startpoint such that the fact is after or met-by (:> :MI) 
the interval. Since these techniques correspond to the three 
termination techniques presented in Section 5.1, they are 
presented by comparison. 

Delay of Rule Antecedents If the fact to be de- 
layed is the consequent of a rule, we can indirectly de- 
lay it after or met-by (:> :MI) the prevention interval 
by delaying one of the rule’s antecedents. The technique 
can only be applied to antecedents which can delay the 
consequent, meaning $ANTECEDENT (3 :M :s :SI :FI :DI 
:o :=I $CONSEQUENT holds. Determining whether an an- 
tecedent can delay a consequent is performed in a similar 
manner to determining whether an antecedent can termi- 
nate a consequent. Searching possible ways of delaying, 
an antecedent is done similarly by recursively applying the 
three techniques presented in this section. For instance, we 
can delay a consequent by delaying one of its antecedent’s 
antecedents. 

Delay by Constraining an Applied Operator If the 
fact to be delayed was a precondition or effect of an ap- 
plied operator and the operator has control over its start- 
point, we can simply assert the constraint that the fact 
is after or met-by the prevention interval. The operator 
definition specifies whether an operator controls the start- 
point of precondition and effect intervals. As an example 
of delay by operator constraint, Figure 3 shows another 
solution to the plan described in Figure 2. This solu- 
tion performs the prevention by constraining the startpoint 
of operator effect (HOLDING ?x> to occur after or met-by 
$NoT-HOLDING-ANYTHING. 

Delay by Applying an Operator The final technique 
for delaying a fact after or met-by some interval is to ap- 
ply an operator. The operator must have a precondition 
unifying with the fact and must be defined to have control 
over the precondition’s startpoint. Unlike the termination 
operators described in Section 5.1, delay operators are less 
useful for modeling domains. While termination operators 
terminate a condition which already holds, delay operators 
delay the start of a condition which will inevitably hold. 
Such inevitability is rare in a domain- if an action can 
delay the start of a condition, it may keep it from ever 
occurring. Instead, such conditions should be modeled as 
rule consequents, which are subject to the prevention tech- 
niques of Section 5.3 as well as delay techniques. 

5.3 Preventing Rule Consequents 
One technique for preventing a fact from intersecting an 
interval is to prevent the fact from ever being asserted. 
This technique can be restricted to facts which are the 
consequents of rules, excluding the effects of applied oper- 
ators, since our planner is complete in searching possible 
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(CLEAR At p clear-a-lnrt0 clear-af tey 

(CLERR 8) $clear-b-lnlt0 , 

(CLEAR C) 
(HJLDING A) 
(fIOUE R C B) 
(ON A B) 
(ON A C) $on-a-c-mlt0 , 

(PICKUP R C) plckup-ob- rOmQ 

(PUTDOWN R B) I$outdgwn-ob-to0 

GOAL-STATE peal TstateQ 

,INITIAL-STRTE +mltial-state0 

(NCT -HOLDI NG )$not-tolcilng-anythIng 

Figure 3: Another plan to move A, preventing HOLDING 
during $NOT-HOLDING-ANYTHING 

combinations of operators which solve the goals. In other 
words, if a search node’s operator asserts an effect which 
violates a prevention interval, we do not have to backtrack 
for a solution which avoids applying the operator, since 
such solutions are already being searched. 

Preventing Assertion of Rule Antecedents One 
way of preventing a rule consequent is to prevent one of 
the rule’s antecedents from being asserted. For each an- 
tecedent which was itself the consequent of a previous rule, 
we recursively apply the techniques for preventing rule con- 
sequents to the previous rule. Preventing a rule consequent 
requires (for completeness) searching all possible ways of 
interrupting the chain of inference which led to the asser- 
tion of any one of its antecedents. The rule at the top of 
the chain can only be prevented by upsetting its tempo- 
ral conditions, since its antecedent facts are either initially 
given or the effects of operators. 

Preventing Temporal Conditions A rule can also be 
prevented by achieving the opposite of one of its temporal 
conditions. For instance, for the temporal condition 

$INTERVAL~ (:s :F :D :=) $INTERVAL~ 

we search ways of constraining $INTERVALl and $INTERVAL:! 
to values :SI, :FI, :DI, :<, :>, :M, :MI, :0, or :OI. A 
given value can be achieved by manipulating one of the two 
antecedent’s intervals. Values :< and : > can be achieved 
through the termination and delay techniques presented in 
sections 5.1 and 5.2, respectively. For instance, $a :< $b 
can be achieved either by terminating $a such that $a : < 
$b or by delaying $b such that $a :< $b. The other eleven 
values require more restrictive techniques. Whereas the 
termination techniques move an interval’s endpoint back- 
wards (sooner) in time, and the delay techniques move 
an interval’s startpoint forwards (later) in time, these val- 
ues require bidirectional control over endpoints and start- 
points, allowing us to move them forwards or backwards. 



For instance, when achieving $a :M $b, if we could only 
move $a’s endpoint backwards, we shou Id not be able to 
act in situations where $a : (0 $b. 

our bidirectional control techniques are similar to the 
termination and delay techniques, except that the tech- 
nique for constraining a rule consequent by constraining an 
antecedent is more restrictive. Section 5.1 explained that 
if an antecedent terminates a consequent through tempo- 
ral constraints defined in the rule, the consequent can be 
prevented over an interval by terminating the antecedent 
over that interval. The definition of terminatability was 

<antecedent> (:> :MI :SI :F :FI 
:DI :OI :=) <consequent>. 

The definition we use for bidirectional endpoint control 
is: 

IF <antecedent> ( :F :FI : =) <consequent > THEN 
<consequent>‘s endpoint can be controlled by 
controlling <antecedent > ‘s endpoint. 

IF <antecedent> (:MI) <consequent> THEN 
<consequent>‘s endpoint can be controlled by 
controlling <antecedent>‘s startpoint. 

In other words, <consequent>‘s endpoint must be known 
to occur at either <antecedent>‘s startpoint or endpoint. 
Despite the restrictive temporal conditions, this control 
technique is often effective since many domain rules have 
constraints of the form <antecedent> (:=> <consequent>, 
which satisfies the restriction. 

This control technique has limitations. For instance, if 
the rule specified that <antecedent > ( : DI> <consequent >, 
the consequent is sandwiched between the startpoint and 
endpoint of the antecedent. Therefore, achieving control 
of both startpoint and endpoint of the antecedent would 
achieve control over the startpoint and endpoint of the con- 
sequent. While we could improve the search strategy to 

would require a richer temporal logic (with a notion of du- 
ration) to be able to express the need to constrain both 
intervals: for instance, to achieve $A1 
have to terminate $A1 and delay $A2. 

(: 0 $A2 one might 

revention Search Strategy 
We have implemented a search strategy for correcting pre- 
vention violations, using the techniques presented in pre- 
vious sections. (See [Hogge, 87b] for details of the algo- 
rithm.) The strategy allows the techniques to use each 
other in a recursive fashion. For example, a fact might 
be prevented over an interval by preventing it from being 
asserted as a rule consequent, accomplished by preventing 
an antecedent of the rule from being asserted by another 
rule, accomplished by thwarting a temporal condition of 
the rule, accomplished by applying an operator to termi- 
nate an ant,ecedent such that the condition does not hold. 
The strategy’s complexity is bounded by the number of 
operators, the lengths of inference chains, and the num- 
ber of possible relation values in the inverse of each rule’s 
temporal conditions. 

Our search strategy suffers from one source of incom- 
pleteness which appears difficult to correct. When apply- 
ing an operator to accomplish some temporal constraint 
(such as terminating an interval or controlling its end- 
point), our implementation only backtracks to the parent 
of the current search node. Thus, we sometimes miss the 
solution since the parent node might be too constrained 
(through the presence of ot,her operators) whereas one of 
its ancestor nodes might not be. As a trivial example, sup- 
pose a rule asserts a contradiction if more than two MOVE 
operators are used in a plan. If two moves have been ap- 
plied at node W and we must introduce a third to carry 
out some prevention, introducing it into W will cause a 
contradiction. Thus, completeness requires trying every 

achieve such simultaneous control, the temporal logic does 
not give us a way of expressing what changes to the an- 
tecedent’s startpoint and endpoint cause the desired con- 
straint on the consequent’s startpoint or endpoint. 

For a full description of how the bidirectional control 
techniques are used, refer to [Hogge, 87b]. For brevity, we 
will just describe one case. In order to achieve $A1 (:S> 
$A2, one has to constrain the two intervals’ startpoints to 
happen simultaneously (expressed as the constraint ( :S 
:SI :=I) and to constrain their endpoints such that $Al's 
endpoint happens before $A2's endpoint (expressed as the 
constraint ( :O :S :D)). We must search these two require- 
ments independently, queueing search nodes which con- 
strain the startpoints and others which constraint the end- 
points. (Notice that meeting both requirements results in 
the desired value :s, since :S is the intersection of ( :S 
: SI : => and ( : o : s :D> .) It would be less general to as- 
sume that actions must be performed to constrain both 
the startpoints and endpoints; for instance, the act of con- 
straining the endpoints of $A1 and $A2 might fire some rule 
which causes their startpoints to be constrained as desired. 

ancestor of W. Besides increasing the complexity, this is 
problematic since the intervals to be constrained may not 
exist early enough in the search tree. Since the existence 
of intervals depends on the order in which operators were 
applied during search, completeness would require recon- 
strutting the search with different operator orderings. 

The following summarizes our techniques for preventing a 
fact F from intersecting an interva1 in a tempora1 planner: 

1. Constrain (terminate) F’s interval before or meeting 
(:< :M) the prevention interval. 

la. If F is the consequent of a rule, accomplish the 
constraint by constraining an antecedent. 

lb. If F was a precondition or effect of an applied op- 
erator, and the operator definition specifies end- 
point control, simply assert the constraint. 

lc. Apply an operator which has an endpoint con- 
trolled precondition unifying with F and assert 

Our techniques for preventing temporal conditions as- 
sume that a temporal constraint between two intervals can 
be achieved by constraining one of the two intervals. It 

‘For bidirectional startpoint 
:SI for :FI, and :M for :MI. 

control, substitute :S for :F, 

the constraint. 
2. Constrain (delay) F’s interval after or met-by (: > :MI) 

the prevention interval. 

2a. If F is the consequent of a rule, accomplish 
constraint by constraining an antecedent. 

the 
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2b. If F was a precondition or effect of an applied op- 
erator, and the operator definition specifies start- 
point control, simply assert the constraint. 

2c. Apply an operator which has a startpoint con- 
trolled precondition unifying with F and assert 
the constraint. 

3. If F is the consequent of a rule, prevent F from being 
asserted by preventing the rule from firing. Backtrack 
to the search node before the rule fired and: 

3a. upset its temporal preconditions, or 
3b. prevent assertion of an antecedent by preventing 

the rule which asserted it as a consequent. 

Further work in prevention should make use of more ex- 
pressive temporal representations to solve the shortcom- 
ings of our techniques and should address the backtrack- 
ing problem of our search strategy. A useful extension 
would be to allow prevention specifications (temporally 
constrained negative preconditions) in operator definitions. 
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