
Prevention Techniques for a Temporal Planner*

Abstract

Research in domain independent

John C. Mogge
Artificial Intelligence Laboratory

Texas Instruments
P.O. Box 655474 MS 238

Dallas, Texas 75265

planning has
Table 1: Seven Possible Values of Interval Relations and
their Inverses

concentrated on making desired facts (goals) be-
come true, with less attention on preventing
undesired facts (negative goals) from becoming
true. This document presents preliminary work
towards a temporal-based model of prevention,
based on Allen and Koomen’s temporal plan-
ner. The temporal model permits more expres-
sive prevention problems and a more powerful
prevention-oriented planner. Negative goals are
temporally constrained-for instance, we can di-
rect the planner to prevent a fact F from occur-
ring before, after, or during a specific goal, be-
tween two temporally separated goals, etc. The
planner can find solutions which allow F to be-
come true at any time outside of the specified
interval or which never allow F to become true.
The temporal model permits the idea of delay-
ing F after the interval, as well as terminating it
before the interval. This paper describes a set
of prevention techniques which have been imple-
mented in a temporal planner and discusses nec-
essary requirements for a more complete preven-
tive planner.

I ntroduction
Research in domain independent planning has concen-
trated on making desired facts become true, with less at-
tention on preventing undesired facts from becoming true.
[McDermott, 781 formulated prevention as a policy influ-
encing the achievement of a goal, while [Fikes, Hart &
Nilsson, 721 proposed extending STRIPS to allow nega-
tive goals solvable through an operator’s delete list. This
document presents preliminary work towards a temporal-
based model of prevention, based on the temporal planner
of [Allen and Koomen, 831. The temporal model permits
more expressive prevention problems and a more powerful
prevention-oriented planner. Negative goals are tempo-
rally constrained-for instance, we can direct the planner
to prevent a fact F from occurring before, after, or during a
specific goal, between two temporally separated goals, etc.
The planner can find solutions which allow F to become
true at any time outside of the specified interval or which

*This research was conducted at the Qualitative Reason-
ing Group, Department of Computer Science, the University
of Illinois at Urbana-Champaign, 1304 W. Springfield Avenue,
Urbana, Illinois 61801. It was supported by the Office of Naval
Research, Contract No. N00014-85-K-0225.

never allow F to become true. (Non-temporal planners
are restricted to the latter set of solutions.) The temporal
model permits the idea of delaying F after the interval, as
well as terminating it before the interval.

Section 2 overviews the temporal planner for which we
have formulated the prevention techniques. (The planner,
prevention techniques, and a set of examples are imple-
mented in Common Lisp and are publically available.) Sec-
tion 3 specifies how prevention problems are posed in our
planner. Section 4 describes the criteria for detecting that
something must be done to prevent some undesired fact,
while Section 5 presents a set of prevention techniques.
Section 6 describes the search strategy which employs these
techniques.

oral

Allen’s temporal logic defines an interval as a discrete por-
tion of time, often corresponding to the period of time over
which a fact holds. The temporal relation between any two
intervals is a disjunction of the thirteen possible values
given in Table 1. For instance, the logic might know that
one interval can occur either before, after, or overlapping
another interval, as shown in Figure 1.

Throughout this paper, pattern variables are denoted by
symbols starting with ?. Temporal intervals are denoted
by symbols starting with $. Temporal relations are written
as lists; for example, if $INTERVAL~ can occur before, after,
or overlapping $INTERVAL2, we write

UNTERVALI (:< :> ~0) $INTERVAL~.

The logic maintains a transitive closure over tempo-
ral relations. For instance, $INTERVALl (:=> $INTERVALZ
and $INTERVALI (:< :=> $INTERVAL3 implies $INTERVALZ
(:< :=> $INTERVALB.

[Allen and Koomen, 831’s planner temporally qualifies

Hogge 43

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

I---$INTERVAL~---I I---$INTERVAL2---I
LOCATION) for all ?SOME-POT, (AT POT~ LOCATION) must be
prevented.

I---$INTERVAL2---I

I---UNTERVALI---I
I---$INTERVAL2---I

Figure 1: The Temporal Relation $INTERVALl (:< :>
:0) $INTERVAL2.

the given and goal facts of each partial plan with inter-
vals and a set of temporal relations among them. We have
extended the planner to handle domain-dependent, tempo-
rally qualified causal rules for modeling complex (interact-
ing) operator effects. For instance, a rule might assert some
condition when two applied operators overlap in time. A
rule’s antecedents are comprised of a set of given facts and
temporal conditions which must hold among them. Its
consequents are a set of new given facts and temporal con-
straints among antecedents and consequents.

3 revention efinition
For the purposes of this paper, prevention is the process
of planning for goals while keeping undesired facts from
holding over specified time intervals. Problem descriptions
include prevention specifications - pairs of prevention uni-
fication patterns, -their time intervals, and temporal con-
straints on these intervals. Pattern variables are univer-
sally quantified. For instance, suppose our problem de-
scription includes a prevention specification

(ON A TANYTHING) $A-NOT-ON-ANYTHING,

and temporal constraints positioning $A-NOT-ON-ANYTHING
with respect to intervals of given and goal facts. The plan-
ner solves the problem, preventing any fact unifying with
(ON A ?ANYTHING) from temporally intersecting
$A-NOT-ON-ANYTHING. When such intersections or violations
are detected at a search node (using the criteria described
in Section 4), our planner backtracks and uses the tech-
niques presented in Section 5 to prevent the violation.

4 etecting Prevention
Violat ions

A fact of a given search node violates a prevention speci-
fication if it passes two tests. First, the fact must unify
with the prevention pattern with none of its variables
being bound to constants in the pattern (though vari-
ables in the pattern can be bound to constants of the
fact). For instance, (AT ?SOME-POT LOCATION) tests nega-
tive against pattern (AT POTI LOCATION), while (AT POTI
LOCATION) tests positive against pattern (AT ?SOME-POT
LOCATION). Clearly, when preventing (AT POT1 LOCATION),
we can not assume that (AT ?SOME-POT LOCATION) should
b e prevented since we do not know whether ?SOME-POT
refers to POTl. Contrarily, to prevent (AT ?SOME-POT

The second test for detecting violations depends on
whether the search node is a partial or finished plan. For
partial plans, the fact’s interval must definitely intersect
the prevention interval, meaning their temporal relation
is a subset of (:S :SI :F :FI :D :DI :0 :01 :=>. For fin-
ished plans, the fact’s interval must possibly intersect the
prevention interval, meaning their temporal relation has a
non-zero intersection with (:S :SI :F :FI :D :DI :0 :01
: =>. The distinction is important. If a prevention violation
is possible (but not definite) in a partial plan, acting to cor-
rect the violation loses generality, since the final solution
might involve a combination of operators and constraints
which make the violation impossible. In a finished plan,
no further constraints will be added, so it is reasonable to
prevent a possible violation.

5 revent ion Techniques

In order to retain completeness, a planner searches every
possible way of solving a goal through applicable opera-
tors. Likewise, when preventing a fact from intersecting
an interval, our planner attempts to retain completeness
by searching all possible ways it knows of accomplishing
the prevention. While our prevention techniques are not
complete, they work in many situations. The techniques
are described in the following three sections. In a nutshell,
we prevent a fact from int,ersecting an interval by either
terminat,ing it before the interval (Section 5.1), delaying it
past the interval (Section 5.2), or preventing it from being
asserted as a rule consequent (Section 5.3).

5.1 Preventing via Termination
This section describes three techniques for preventing a
fact’s interval from intersecting another interval by con-
straining (terminating) its endpoint such that the fact is
before (: 0 or meets (: M) the interval.

Termination of Rule Antecedents If the fact to be
terminated is the consequent of a rule, we can indi-
rectly terminate it before or meeting (:< :MI) the preven-
tion interval by terminating one of the rule’s antecedents.
The technique can only be applied to antecedents which
terminate the consequent, meaning $ANTECEDENT (:> :MI
:SI :F :FI :DI :01 :=> $CONSEQUENT holds. This t,empo-
ral condition says that $ANTECEDENT'S endpoint does not
occur sooner than $CONSEQUENT'S endpoint. We assume
that by ending the antecedent sooner, the consequent
is ended sooner. Under this definition, the constraint
SANTECEDENT (3 :M) $SOME-INTERVAL results in the con-
straint $CONSEQUENT (:< :M) $SOME-INTERVAL, by transitiv-
ity. Consider the following rule:

Antecedents:
(HEAT-PATH 'src ?dst) $heat-path,
(> (TEMPERATURE kc)

(TEMPERATURE ?dst)) $temp-difference
Antecedent Temporal Conditions:

There exists $heat-flow such that
$heat-path (:SI :FI :DI :=> $heat-flow and
$temp-difference (:SI :FI :DI :=> $heat-flow

Consequents:
(HEAT-FLOW ?S~C Tdst > $heat-flow

44 Automated Reasoning

Since $HEAT-PATH (: s1 : FI : Dr :=> SHEAT-FLOW meets
the termination criteria, we can terminate SHEAT-FLOW be-
fore some interval by terminating $HEAT-PATH before that
interval.

Determining which antecedenis of a rlule can terminate
which consequents is a difficult problem which we’ve only
partially solved. Since a rule may have implicit consequent
temporal constraints inferable through transitivity, we take
the transitive closure of rule constraints before checking
for the termination condition (: > :MI : SI :F : FI : DI : 01
: =>. This is still insufficient, since sets of interacting rules
in a domain can have implicit temporal constraints not
apparent when examining each rule’s local temporal con-
straints.

We also make several simplified assumptions. First, we
assume that one can consistently terminate a consequent
by terminating only one of the antecedents. As a counter
example, consider the following rule:

Antecedents: A $A, B $B
Antecedent Temporal Conditions: $A (:=> $B
Consequents: C $A

The rule is triggered when two facts A and B are tempo-
rally equal. Under these circumst.ances, C is asserted over
A’s interval. Since the consequent is temporally equal to
both antecedents, our definition says it can be terminated
by terminating either antecedent. However, it is not gen-
erally true that terminating $A necessarily causes a cor-
responding termination of $B and vice versa. We would
expect to have to find a means of terminating both in-
tervals in a coordinated manner such that their temporal
relation value (: => is maintained.

Another assumption is that intervals do not have fixed
durations. If an antecedent were to meet a consequent and
the conseqluent were known to hold over a fixed duration,
terminating the antecedent would cause the consequent to
terminate sooner.

When terminating a consequent by terminating one of
its antecedents, we can apply any of the three methods
described in this section. For instance, we can terminate
a consequent by terminating one of its antecedent’s an-
tecedents.

Unfortunately, our approach misses some problem solu-
tions through overconstraint. The ideal approach would
terminate the antecedent as late as possible such that the
consequent meets or occurs before the prevention interval,
without necessarily asserting (:< :M) from antecedent to
the prevention interval. Such an implementation probably
requires a more expressive temporal logic with a notion of
metric durations, such as [Dean & McDermott, 871. Our
temporal logic does not give us a way of expressing what
changes to the antecedent’s endpoint cause the consequent
to miss the prevention interval. For instance, shortening
an antecedent by two minutes might cause a consequent
to just miss the- prevention interval, without having the
antecedent entirely miss the prevention interval.

~OBJECT ?SURFACE), which meets effect (HOLDING ?OBJECT),
which meets effect (PUTDOWN ~OBJECT ?NEW-SURFACE), and
it could likewise control the endpoint of the effects. Other
operators might not be able to control such endpoints-
for instance, a doctor can “bring a patient back to life,”
but that act does not control how long the patient lives.
We provide such control as a user-definable parameter in
operator definitions.

The ability to constrain applied operators allows us to
solve the following prevention problem. Suppose our do-
main has the previous MOVE operator. Our problem spec-
ifies given (ON A C) $ON-AC, goal (ON A B) $ON-AB, preven-
tion specification (HOLDING ?x) $N0T-HOLDING-ANYTHING,
and the following constraints:

SON-AC (: <)
$N~T-HOLDING

$N0T-HOLDING-ANYTHING,
-ANYTHING (: <> $ON-AB

Sometime between (ON A C> and (ON A B), there is an in-
terval over which we do not want to be holding anything
(but we could be picking up things or putting down things).
The goal (ON A B) is solved by applying MOVE, introduc-
ing effect (HOLDING A) which can possibly intersect
$NOT-HOLDING-ANYTHING. To prevent the intersection, we
constrain the endpoint of (HOLDING 7~) to occur before or
meeting $NOT-HOLDING-ANYTHING. Figure 2 shows the resul-
tant plan and one set of the possible temporal constraints.

(CLEAR A) p clear-a-mpt@ clear-after

(CLEAR B)
(CLERR C)
(HOLDING A)
(MOUE A C B) I

$moueQ
I

(ON A B) Son-a-b-qoalQ 1

(ON A C) on-a-c-in1 0

(PICKUP R C) $Dlckyp-Ob-from@
(PUTDOWN A B) putdown-obrtoQ

jOAL-STRTE poalptateQ

INITIAL-STATE *mltfal-stateQ

/qOT-HOLDING pot-tpldmg-anything@

Figure 2: Plan to move A, preventing HOLDING during
$NOT-HOLDING-ANYTHING

Termination by Constraining an Applied Operator

‘Termination by Applying an Operator The final
technique for terminating a fact before or meeting some
interval is to apply an operator. The operator must have a

If the fact to be terminated was a precondition or effect precondition unifying with the fact and must be defined to
of an applied operator and the operator has temporal con- have control over the precondition’s endpoint, permitting
trol over its endpoint, we can simply assert the constraint us to assert the constraint. For instance, the blocksworld
that the fact is before or meets the prevention interval. MOVE operator discussed above could be applied to ter-
For instance, a simple blocksworld MOVE operator would minate any fact unifying with precondition (ON ?OBJECT
be able to control the endpoint of its precondition (ON ‘SURFACE) by moving TOBJECT to some other surface. (The

Hogge 45

MOVE operator’s definition would specify that it has con-
trol over the interval endpoint of the precondition.) This
technique is similar to what [Fikes, Hart & Nilsson, 721
formulated for STRIPS, with endpoint controllable pre-
conditions instead of delete lists.

5.2 Preventing via Delay
This section presents three techniques for preventing a fact
from intersecting an interval by constraining (delaying) its
startpoint such that the fact is after or met-by (:> :MI)
the interval. Since these techniques correspond to the three
termination techniques presented in Section 5.1, they are
presented by comparison.

Delay of Rule Antecedents If the fact to be de-
layed is the consequent of a rule, we can indirectly de-
lay it after or met-by (:> :MI) the prevention interval
by delaying one of the rule’s antecedents. The technique
can only be applied to antecedents which can delay the
consequent, meaning $ANTECEDENT (3 :M :s :SI :FI :DI
:o :=I $CONSEQUENT holds. Determining whether an an-
tecedent can delay a consequent is performed in a similar
manner to determining whether an antecedent can termi-
nate a consequent. Searching possible ways of delaying,
an antecedent is done similarly by recursively applying the
three techniques presented in this section. For instance, we
can delay a consequent by delaying one of its antecedent’s
antecedents.

Delay by Constraining an Applied Operator If the
fact to be delayed was a precondition or effect of an ap-
plied operator and the operator has control over its start-
point, we can simply assert the constraint that the fact
is after or met-by the prevention interval. The operator
definition specifies whether an operator controls the start-
point of precondition and effect intervals. As an example
of delay by operator constraint, Figure 3 shows another
solution to the plan described in Figure 2. This solu-
tion performs the prevention by constraining the startpoint
of operator effect (HOLDING ?x> to occur after or met-by
$NoT-HOLDING-ANYTHING.

Delay by Applying an Operator The final technique
for delaying a fact after or met-by some interval is to ap-
ply an operator. The operator must have a precondition
unifying with the fact and must be defined to have control
over the precondition’s startpoint. Unlike the termination
operators described in Section 5.1, delay operators are less
useful for modeling domains. While termination operators
terminate a condition which already holds, delay operators
delay the start of a condition which will inevitably hold.
Such inevitability is rare in a domain- if an action can
delay the start of a condition, it may keep it from ever
occurring. Instead, such conditions should be modeled as
rule consequents, which are subject to the prevention tech-
niques of Section 5.3 as well as delay techniques.

5.3 Preventing Rule Consequents
One technique for preventing a fact from intersecting an
interval is to prevent the fact from ever being asserted.
This technique can be restricted to facts which are the
consequents of rules, excluding the effects of applied oper-
ators, since our planner is complete in searching possible

46 Automated Reasoning

(CLEAR At p clear-a-lnrt0 clear-af tey

(CLERR 8) $clear-b-lnlt0 ,

(CLEAR C)
(HJLDING A)
(fIOUE R C B)
(ON A B)
(ON A C) $on-a-c-mlt0 ,

(PICKUP R C) plckup-ob- rOmQ

(PUTDOWN R B) I$outdgwn-ob-to0

GOAL-STATE peal TstateQ

,INITIAL-STRTE +mltial-state0

(NCT -HOLDI NG)$not-tolcilng-anythIng

Figure 3: Another plan to move A, preventing HOLDING
during $NOT-HOLDING-ANYTHING

combinations of operators which solve the goals. In other
words, if a search node’s operator asserts an effect which
violates a prevention interval, we do not have to backtrack
for a solution which avoids applying the operator, since
such solutions are already being searched.

Preventing Assertion of Rule Antecedents One
way of preventing a rule consequent is to prevent one of
the rule’s antecedents from being asserted. For each an-
tecedent which was itself the consequent of a previous rule,
we recursively apply the techniques for preventing rule con-
sequents to the previous rule. Preventing a rule consequent
requires (for completeness) searching all possible ways of
interrupting the chain of inference which led to the asser-
tion of any one of its antecedents. The rule at the top of
the chain can only be prevented by upsetting its tempo-
ral conditions, since its antecedent facts are either initially
given or the effects of operators.

Preventing Temporal Conditions A rule can also be
prevented by achieving the opposite of one of its temporal
conditions. For instance, for the temporal condition

$INTERVAL~ (:s :F :D :=) $INTERVAL~

we search ways of constraining $INTERVALl and $INTERVAL:!
to values :SI, :FI, :DI, :<, :>, :M, :MI, :0, or :OI. A
given value can be achieved by manipulating one of the two
antecedent’s intervals. Values :< and : > can be achieved
through the termination and delay techniques presented in
sections 5.1 and 5.2, respectively. For instance, $a :< $b
can be achieved either by terminating $a such that $a : <
$b or by delaying $b such that $a :< $b. The other eleven
values require more restrictive techniques. Whereas the
termination techniques move an interval’s endpoint back-
wards (sooner) in time, and the delay techniques move
an interval’s startpoint forwards (later) in time, these val-
ues require bidirectional control over endpoints and start-
points, allowing us to move them forwards or backwards.

For instance, when achieving $a :M $b, if we could only
move $a’s endpoint backwards, we shou Id not be able to
act in situations where $a : (0 $b.

our bidirectional control techniques are similar to the
termination and delay techniques, except that the tech-
nique for constraining a rule consequent by constraining an
antecedent is more restrictive. Section 5.1 explained that
if an antecedent terminates a consequent through tempo-
ral constraints defined in the rule, the consequent can be
prevented over an interval by terminating the antecedent
over that interval. The definition of terminatability was

<antecedent> (:> :MI :SI :F :FI
:DI :OI :=) <consequent>.

The definition we use for bidirectional endpoint control
is:

IF <antecedent> (:F :FI : =) <consequent > THEN
<consequent>‘s endpoint can be controlled by
controlling <antecedent > ‘s endpoint.

IF <antecedent> (:MI) <consequent> THEN
<consequent>‘s endpoint can be controlled by
controlling <antecedent>‘s startpoint.

In other words, <consequent>‘s endpoint must be known
to occur at either <antecedent>‘s startpoint or endpoint.
Despite the restrictive temporal conditions, this control
technique is often effective since many domain rules have
constraints of the form <antecedent> (:=> <consequent>,
which satisfies the restriction.

This control technique has limitations. For instance, if
the rule specified that <antecedent > (: DI> <consequent >,
the consequent is sandwiched between the startpoint and
endpoint of the antecedent. Therefore, achieving control
of both startpoint and endpoint of the antecedent would
achieve control over the startpoint and endpoint of the con-
sequent. While we could improve the search strategy to

would require a richer temporal logic (with a notion of du-
ration) to be able to express the need to constrain both
intervals: for instance, to achieve $A1
have to terminate $A1 and delay $A2.

(: 0 $A2 one might

revention Search Strategy
We have implemented a search strategy for correcting pre-
vention violations, using the techniques presented in pre-
vious sections. (See [Hogge, 87b] for details of the algo-
rithm.) The strategy allows the techniques to use each
other in a recursive fashion. For example, a fact might
be prevented over an interval by preventing it from being
asserted as a rule consequent, accomplished by preventing
an antecedent of the rule from being asserted by another
rule, accomplished by thwarting a temporal condition of
the rule, accomplished by applying an operator to termi-
nate an ant,ecedent such that the condition does not hold.
The strategy’s complexity is bounded by the number of
operators, the lengths of inference chains, and the num-
ber of possible relation values in the inverse of each rule’s
temporal conditions.

Our search strategy suffers from one source of incom-
pleteness which appears difficult to correct. When apply-
ing an operator to accomplish some temporal constraint
(such as terminating an interval or controlling its end-
point), our implementation only backtracks to the parent
of the current search node. Thus, we sometimes miss the
solution since the parent node might be too constrained
(through the presence of ot,her operators) whereas one of
its ancestor nodes might not be. As a trivial example, sup-
pose a rule asserts a contradiction if more than two MOVE
operators are used in a plan. If two moves have been ap-
plied at node W and we must introduce a third to carry
out some prevention, introducing it into W will cause a
contradiction. Thus, completeness requires trying every

achieve such simultaneous control, the temporal logic does
not give us a way of expressing what changes to the an-
tecedent’s startpoint and endpoint cause the desired con-
straint on the consequent’s startpoint or endpoint.

For a full description of how the bidirectional control
techniques are used, refer to [Hogge, 87b]. For brevity, we
will just describe one case. In order to achieve $A1 (:S>
$A2, one has to constrain the two intervals’ startpoints to
happen simultaneously (expressed as the constraint (:S
:SI :=I) and to constrain their endpoints such that $Al's
endpoint happens before $A2's endpoint (expressed as the
constraint (:O :S :D)). We must search these two require-
ments independently, queueing search nodes which con-
strain the startpoints and others which constraint the end-
points. (Notice that meeting both requirements results in
the desired value :s, since :S is the intersection of (:S
: SI : => and (: o : s :D> .) It would be less general to as-
sume that actions must be performed to constrain both
the startpoints and endpoints; for instance, the act of con-
straining the endpoints of $A1 and $A2 might fire some rule
which causes their startpoints to be constrained as desired.

ancestor of W. Besides increasing the complexity, this is
problematic since the intervals to be constrained may not
exist early enough in the search tree. Since the existence
of intervals depends on the order in which operators were
applied during search, completeness would require recon-
strutting the search with different operator orderings.

The following summarizes our techniques for preventing a
fact F from intersecting an interva1 in a tempora1 planner:

1. Constrain (terminate) F’s interval before or meeting
(:< :M) the prevention interval.

la. If F is the consequent of a rule, accomplish the
constraint by constraining an antecedent.

lb. If F was a precondition or effect of an applied op-
erator, and the operator definition specifies end-
point control, simply assert the constraint.

lc. Apply an operator which has an endpoint con-
trolled precondition unifying with F and assert

Our techniques for preventing temporal conditions as-
sume that a temporal constraint between two intervals can
be achieved by constraining one of the two intervals. It

‘For bidirectional startpoint
:SI for :FI, and :M for :MI.

control, substitute :S for :F,

the constraint.
2. Constrain (delay) F’s interval after or met-by (: > :MI)

the prevention interval.

2a. If F is the consequent of a rule, accomplish
constraint by constraining an antecedent.

the

Hogge 47

2b. If F was a precondition or effect of an applied op-
erator, and the operator definition specifies start-
point control, simply assert the constraint.

2c. Apply an operator which has a startpoint con-
trolled precondition unifying with F and assert
the constraint.

3. If F is the consequent of a rule, prevent F from being
asserted by preventing the rule from firing. Backtrack
to the search node before the rule fired and:

3a. upset its temporal preconditions, or
3b. prevent assertion of an antecedent by preventing

the rule which asserted it as a consequent.

Further work in prevention should make use of more ex-
pressive temporal representations to solve the shortcom-
ings of our techniques and should address the backtrack-
ing problem of our search strategy. A useful extension
would be to allow prevention specifications (temporally
constrained negative preconditions) in operator definitions.

8 Acknowledgements
Brian Falkenhainer posed a problem which got me inter-
ested in prevention. Thanks to Ken Forbus and QRG for
your support. The Office of Naval Research supported this
project through Contract No. N00014-85-K-0225.

References
[Allen, 831 Allen, J.F., “Maintaining Knowledge about

Temporal Intervals”, Communications of the ACM,
vol. 26, pp. 832-843.

[Allen and Koomen, 831 Allen, J.F. and Koomen, J.A.,
“Planning Using a Temporal World Model”, Proceed-
ings of the Eighth International Joint Conference on
Artificial Intelligence, pp.‘741-747.

[Dean & McDermott, 871 Dean, T.L. and McDermott,
D.V., “Temporal Data Base Management”, Artificial
Intelligence, vol. 32, pp. l-55.

[Fikes, Hart & Nilsson, 721 Fikes, R., Hart, P., and Nils-
son, N., “Some New Directions in Robot Problem
Solving,” Machine Intelligence 7 (1972), pp. 405-430.

[Hogge, 87a] Hogge, J.C., “TIME and TPLAN User’s
Manual”, University of Illinois Department of Com-
puter Science Technical Report UIUCDCS-R-87-1366,
September 1987.

[Hogge, 87b] Hogge, J.C., “TPLAN: A Temporal Interval-
Based Planner with Novel Extensions”, University of
Illinois Department of Computer Science Technical
Report UIUCDCS-R-87-1367, September 1987.

[Hogge, 87c] Hogge, J.C., “The Compilation of Planning
Operators from Qualitative Process Theory Models.“,
University of Illinois Department of Computer Sci-
ence Technical Report UIUCDCS-R-87-1368, Septem-
ber 1987.

[McDermott, 781 McDermott, D., “Planning and Acting”,
Cognitive Science, vol. 2, pp. 71-109.

48 Automated Reasoning

