
TEST: A MODEL-DRIVEN APPLICATION SHELL

Gary S. Kahn, Al Kepner, and Jeff Pepper
Carnegie Group Inc.

Pittsburgh, Pa. 15219

Abstract

TEST (Troubleshooting Expert System. Tool) is an
application shell that provides a domain-Independent
diagnostic problem solver to ether with a library of
schematic prototypes. TE& fills a design nrche
halfway between rule-based and causal-model
approaches.

This approach has resulted in a design that meets
several functional requirements for an effective
Voubleshootin

a
shelt. Most critically, TEST can

represent bot the impact of failure-modes on .a
machine or system of interest, as well as the heurist!c
problem-solving behavior which can lead to rapid
conclusions.

This paper provides an overview of TEST’s
approach to dia nosis. As a special urpose
application shell, B EST provides P considerab y more
leverage to developers than can be gained through the
use of general purpose heuristic classification systems.

1. lntrsduction

TEST1 (Troubleshooting Expert System Tool) is an
aoolication shell that provrdes a domain-independent
d/agnostic problem solver together with a library of
schematic prototy es.
object ty es and t R

These prototypes constitute the

T
e structure required by each domarn-

soecific EST knowledge base. TEST applications for
factory floor machines: vehicles, and computers, are
currently in development.

TEST fills a design niche halfway between rule-
based and causal-model a proaches. On one hand,
TEST uses a weak causa P model to describe causal
links between failure-modes; and on the other, TEST
uses rules to constrain and direct diagnostic reasoning.
Te:zIt IS, ;tie;pyi retsopects, similar to several other

develop problem-solvin
architectures suitable to the troubleshooting ii tas
[Bylander et a/. 83, Hofmann et al. 861. TEST differs,
however, in offering a more differentiated knowledge
&&yd a more powerful set of control and inference

.

‘TEST is an internal name used at Carnegie Group Inc. TEST is
implemented in Mnowledge Craffm.

TEST’s a preach has resulted in a design that
meets severa P functional
troubleshootin

ii
shell.

requirements for an effective

represent bot
Most critically, TEST can

the impact of failure-modes on a
machine or system of interest, as well as the heuristic
problem-solvin
conclusions. 8

behavior which can lead to rapid
he underlying representation and the

problem-solving method are easily understood by both
design engineers and diagnostic technicians. This has
had a positive im act
Q$!;;rns bu!lt rn TIE !i T

on knowledge acquisition.

marntarnable
ham be;;oEndb;ltbe more

Emycin-like [\/anMelle et al. 811 belief rules.
using

TEST’s approach to diagnosis is explained in the
following sections. The first provides a context of
previous work in the field, identi

8
ing limitations which

motivated the development of TE T. The followin
P

two
sections present overviews of the TEST
base and dia nostic

know edge
roblem solver. The subsequent

section descn es TE T’s unique use of rules. 8 z!

Many features of the TEST s stem

!
K

cannot be
covered within the sco e of t is
comprehensive account of

paper. A
EST’s functionalrty can be

found in [Pepper and Mullins 861; TEST’s approach to
repair is described in [Pepper and Kahn 871; and finally,
development of a s ecralized
workbench is reporte 8

knowledge acquisition
in [Kahn 871.

Many diagnostic expert s stems have been built
over the last several years. 4! ypically, these syst;:;
use either evidential or causal reasoning.
evidential reasoning systems, such as Mycin
761 and Mud [Kahn and McDermott 861, are \

Shortliffe
ru e-based.

Each rule represents a belief association between
evidential considerations and a conclusion warranted by
the evidence. There may be many rules bearing on the
same conclusion. A numeric al orithm is used to
compose evidence provided by eat a applicable rule. A

. .

sup art
P

differential diagnosis, or in the case of

a
ua itative reasonin
iagnosis. Casnet [bt

a simulative approach to
eiss et a/. 78 used a probabilistic

model of causal relations to d
Bayesian analysis.

rive an essentially

814 Expert Systems

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Problem solvers which rely on causal models to
support differential diagnosis or simulation typically run
into three problems when used to reason about
machine faults. The first occurs during development, as
the task of constructing large models becomes bogged
down in complexity and issues of behavioral validation.
The second occurs at run-time as these techniques

ult in intensive search and, as a

ln troubleshooting tasks, a diagnostic conclusion is
reached by performing a test or series of tests that

to isolate an underlying failure-mode.
is less a matter of evaluating the evidence in
than of effectively searching for a conclusive

e this search can often be explained in terms

strategies.

base maintenance,
ive problem-solving

nlike rule-based diagnostic systems,
ntic network of schematic objects, cal

T uses a
rames or

!a a &e-to link.

At the bottom of the hierarchy, as shown, are failure-
modes of individual components, e. .
power supplies (W502, X501, MO5 ,

the particular

tube.
7 or the picture

Intermediate failure-modes typically represent
functional failures which are causal consequences of
component failures, e.g. “Hum in LV
classes of failures, e.ge, “LV Power !i

ower supply”, or

Yl
upply Problem”.

f intermediate failure-modes are common.
ca networks have 4 to 10 levels of concerns,

01% bccur on occasion.

paths, as in CASTE

determining the occurrence of a failure-mode. Rk?S
represent a variety of contingent actions rather than
evidence/belief propositions al as is typical in
Emycin-like diagnostic systems. $Ts use of rules is
described in section 4. Parts provide descri tors of
parts that are associated with component fai ures or P
with repairs.

- DUE-TO

-1: A failure-mode hierarchy
?he example used here is based on television troubleshooting

as described by Tinnell [Tinnell 74 1. Actual TEST knowledge bases
are proprietary to Carnegie Group clients.

Kahfl, Kepner, and Pepper 815

Decision-nodes provide a mechanism for integrating
conventional diagnostic decision logic into the otherwise
failure-mode oriented knowledge base. Although T
can generate its own decision logic from the failure-
mode knowledge base, domain ex erts often prefer to

&
rovide the decision lo

%
ic directly. e his ma be done by

uilding a decision-no e network. Each ecision-node 6y
represents a test together with branches to other tests
contingent on the result of the first. Decision-node
networks typically terminate with the failure-modes that
could cause the problem associated with the network’s
entry point.

Knowledge base maintenance is facilitated by
clustering information around failure-modes (see figure
2-2). Since the failure-mode is the key concept in most
troubleshooting tasks, such aggregates provide an
easily understood and readily accessible structure.
Inspection of a failure-mode provides direct access to
associated tests, repairs and documentation, as well as
to forward and backward causal links to other failure-
modes in the network.

Domain-specific knowledge bases represent pre-
compiled search spaces and serve as input to the
problem solver. Given the failure-mode hierarchy and
other auxiliary information, the problem solver searches
for a diagnostic conclusron, interactively prompting a
technician, or sampling sensors and databases as
necessary to obtain evidence to proceed with the
diagnostic session. The search space can be
dynamically altered by rules (see below) sensitive to
information acquired during a diagnostic session.
Knowledge en ineers can also choose the appropriate
level of granu arity St for the representation of causal
chains, thus constraining the depth of search required
prior to hypothesizin
preferred order in w ?I

a particular failure. Moreover, the
ich to consider candidate causes

may be easily specified.

Figure 2-2: A failure-mode aggregate

16 Expert Systems

In general terms, the problem solver pursues a
depth-first recursive strate
or determined failure. B

y starting with an observed
t seeks the cause of an

occurring failure-mode considering candidate causes
(other failure-modes referenced in the due-to slot of
this failure-mode. A andidate causes can have three
states: confirmed, disconfirmed, and unknown. Failure-
modes are confirmed when the problem solver
determines that they have occurred.

If a candidate cause is disconfirmed, the problem
solver moves on to consider another ossibilit
candidate cause is confirmed, the pro g y- If .a lem so ver will
consequently seek to determine Its causes. This
procedure continues until a terminal failure-mode is
Identified. Terminal failures, those without instantiated
due-to slots, are typically repairable faults.

Following the example in figure 2-1, let’s assume
that a short raster was observed. In this case, the
problem solver would first consider “defective power
supply diode’” as the cause of “short raster”. If this were
ruled out, it would proceed to consider a “vertical swee
failure”. If a vertical swee
or was unknown, the pro E

failure were to be confirme g ,

consider its causes --
!em solver would proceed to

‘vertical sweep generator failure”
and “vertical output failure.”

As new failure-modes come up for consideration,
the problem solver chooses a method of confirmation
provided by the knowledge base developer. It may be a
direct test, a rule-based inference procedure, or the
disconfirmatory recognition (modus to//ens) that a
necessary consequent of the failure-mode had not
occurred. If the failure-mode cannot be confirmed or
disconfirmed, the problem solver will nevertheless
proceed to examine potential causes. If a failure-mode
can have multiple causes, the diagnostic analysis will
not terminate until all potential candidate causes are
evaluated.

Apart from the failure-mode hierarchy, the problem
solver can also be driven by decision-nodes, and data-
gathering activities. The former are used to represent
conventional diagnostic decision logic. Decision-nodes
represent steps in a conditional sequence of tests which
terminate in a decision to rule-out, confirm, or focus on
a failure-mode. TEST’s ability to integrate test- and
failure-mode-driven diagnosis has been critical to
knowledge acquisition as both approaches are typically
prevalent in the procedures used by technicians and
referenced by manuals.

Data-gathering activities are used when tests
should be run as a matter of convenience rather than
for immediate diagnostic purposes. For instance, if
dismantling is required for a particular test, it may be
desirable to run other tests that require similar
dismantling before reassembly, even though the latter
tests are not of immediate relevance.

Additional1 ,
unsolicited Y

TEST allows users to volunteer

than e
B

in ormation, as well as to dynamg;eJli
the course of the diagnosis.

troub eshooting s
is desirable to ta tl

stems tend to be highly interactive, it
e advantage as much as possible of

user input, particularly the human ability to notice
diagnostically critical information, even though the
system may not be asking for it. Moreover, the hunches

of experienced technicians can often prove valuable in
re&rcing diagnostic search. Supporting
inout for both hunches and observations,
makes use of its human partners, but is perceived as
being more user friendly and less frustrating to use.

Finally, the problem solver supports a belief
maintenance s

Y
stem that is used to provide explanation

and an undo acility. The latter provides the ability to
selectively modify any prior input. The impact of a
modificatron is propagated through the belief system,
possibly resulting in a change of diagnostic focus.

The troubleshooting task, like any other, can be
characterized in terms of standard procedures and
default knowled
considerations %

~l~hrch must be a!tered when special

dynamically than
Rules provide the means to

e’a knowledge base under specified
circumstances. w ules are conditional ex ressions of
the form “IF (condition) THEN (action).” Tp he condition
is a boolean combination of (schema, slot, value) triples,
each of which which re
the knowledge base. +

resent a piece of information in
he action specifies a value or

change in value for a schema/slot location. Rules may
be characterized as immediate or on-focus. Immediate
rules act as demons, firing as soon as their conditions
are satisfied. On-focus, or goal-driven, rules are
evoked only when the rule is relevant to the current
focus of the problem solver.

Causal-~odeii~ rules are used to alter the
failure-mode f! hierarc v. For instance. when the LV
power supply is under consideration, and it is known
that the television can emit sound, X501 and R505 can
be removed from the due-to slot of possible causes, as
these ower sources disable the audio on failure (See
figure !i -1). Conjunctive causes are similarly modelled
with causal-modeling rules. That is, a failure-mode
could be added to a due-to list only under the condition
that another failure-mode has been determined to
occur.

roceduaal rules are used to modify the several
kinds of procedural and methodological knowledge that
mav be reoresented in a TEST knowledae base. Most
critical are’the rules used
decision-node networks.

to modify the fglure-node and

Background information acquired durin execution
may suggest altering the order in which far ure-modes 9
are considered. This is typically done to more close1
reflect evidential impact on the likelihoods for eat IfI
failure-mode. A rule would be used, for instance, to
indicate that “a bad picture tube” should be considered
prior to “LV power supply problem” when the raster is
missing and the picture tube is of a series known to be
defective. In the context of machine diagnosis, such
rules provide a mechanism for ensuring that failures due
to part wear are investigated first for older machines,
but only after manufacturing parts problems in the case
of newer machines.

Kahn, Kepner, and Pepper 817

Procedural rules also facilitate the process of
modeling conventional decision logic. Rules overlaid on
decision-nodes may alter the transition

P
ath to a

subsequent decision, or respecify which fai ure-modes
are confirmed or disconfirmed as new information is
acquired at each decision-node. Thus, TEST permits
developers to focus on the default decision logic without
worrying about working aty ical

8
alternatives into the

network. These are easily a ded as special case rules.

Finally, relevance rules may be used to filter the
knowledge base by deactivating objects. Rules
attached to failure-modes, for instance, can remove the
failure-mode from consideration dunng a diagnosis.
This feature is used, for example, in multiple model
knowledge bases when the component part associated
with a failure-mode is not actually used in the model (or
manufacturing run) represented by the unit presenting
the fault.

T provides an effective approach to modeling
troubleshooting knowledge. Domain-dependent
knowledge bases can be built using concepts familiar to
diagnostic technicians and design engineers. Default
diagnostic strategies as well as s

R
ecial case heuristics

can be easily represented in the nowledge base, with
the causal relations that underlie diagnostic reasoning.
By structuring the knowledge base around the failure-
mode cohcept, si

%
nificant modularity and maintainability

is achieved. TES offers a unique mixture of schematic
and rule-based reasoning.

Unlike most of its predecessors, TEST provides
mechanisms for readily expressing search behavior, as
well as for adapting search to newly acquired
information. Because search behavior is determined by
heuristic rules, TEST’s performance is better than
systems which must corn ute alternative hypotheses on
the basis of a causal mo cr el.

Several features of TEST may car over well to the
design of other application shells. These include the
distinction between model and roblem solver, as
opposed to knowledge base and in erence engine. The P
problem solver knows much more about the task
domain and the model assumes much more about the
problem solver than the knowledge base/inference
engine distinction implies. The problem solver is driven
by the model, and as such, preference for vanous
control strate ies can be expressed in the model.
Secondly, TE 8 T’s success as a knowled e engineering
tool has de ended on the use of 8 omain-familiar
concepts. T is has enabled knowledge engineers to R
easily map information from expert sources into the
knowled
import o the representations used. Finally, a model 7

e base; and to explain to their experts the

within which heuristic search constraints may be
expressed appears critical to the performance of model-
driven systems.

References

[Bylander et al. 831 B lander, T., Mittal, S., and
Chandrasekaran, B. 6
S stems

SRL: A Language for Expert

2
for Diagnosis. In Proceedings of the

ighth international Joint Conference on Artificial
Intelligence. 1983.

[DeKleer and Brown 841 DeKleer, J. and Brown, J.S. A
Qualitative Physics Based on Confluences.
Artificial Intelligence , 1984.

[Hofmann et al. 861 Hofmann, M., Caviedes, J., Bourne,
J.. Beale. G.. and Broderson. A. Buildina Exoert
Systems for Repair Domains. expert Systems 3(l) ,
January, 1986.

[Kahn 871 Kahn, G.S. From Application Shell to
Knowledge Acquisition System. In Proceedings of
International Joint Conference on Arttficial
Intelligence. 1987.

[Kahn and McDermott 861 Kahn, G.S., and McDermott,
,llgTghe MUD System. IEEE Expert l(1) , Spring,

.

[Patil et al. 811 Patil, R.P., Szolovits, P., and Schwartz,
W. Causal Understanding of Patient Illness in
Medical Dia

il
nosis.

lnternationa
In Proceedings of the Seventh

Joint Conference on Artificial
Intelligence. 1981.

[Pep er
e

and Kahn 861 Pe per,
Knowledge Craft: An I!

J. and Kahn,
nvironment for Rapid

Prototyping of. Expert Systems. In Prqceedings of
~~~~l&tellrgence for the Automotrve Industry. 

, . 

[Pep er and Kahn 871 Pepper, J. and Kahn, G.S. 
ii epair Strategies in a Diagnostic Expert System. In 
Proceedings of International Joint Conference on 
Artificial Intelligence. 1987. 

[Pepper and Mullins 861 Pepper, J. and Mullins, 
Artificral 

Diagnosis. 
lntellr 

In B 
ence Applied to Audio Systems 
roceedings of the International 

Conference on Transportatron Electronics. 1986. 

[Pople 821 Pople, H. Heuristic Methods for Imposing 
Structure on Ill- structured Porblems. In Szolovits. 
~i~e~t~r , 

Iv 
Arti+ial Intelligence in Medicine, pages 

. estview Press, 1982. 

[Shortliffe 761 Shortliffe, E. Computer-Based Medical 
Consultation: Mycin. Elsevier, 1976. 

[Thompson and Clancey .86] Thompson, T. and 
Clancey, W. J. A Qualitative Modellin Shell for 
rr8c&ess Diagnosis. IEEE Software 3( B ) , March, 

. 

[Tinnell 711 Tinnell, R.W. Television Symtom Diagnosis. 
Howard W. Sams & Co., 1971. 

[VanMelle et al. 811 Van Melle, W., Scott, A.C., Bennett, 
J.C., and Peairs, M. A. The Emycin Manual. 
Technical Report, Stanford, 1981. 

[Weiss et al. 781 Weiss, S., Kerm, K.B., Kulikowski, 
C.A., and Amarel, S. A Model-Based Method for 
Corn uter-Aided Medical Decision-Making. Artificial 
Intel igence , 1978. P 

818 Expert Systems 


