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Abstract 

TEST (Troubleshooting Expert System. Tool) is an 
application shell that provides a domain-Independent 
diagnostic problem solver to ether with a library of 
schematic prototypes. TE& fills a design nrche 
halfway between rule-based and causal-model 
approaches. 

This approach has resulted in a design that meets 
several functional requirements for an effective 
Voubleshootin 

a 
shelt. Most critically, TEST can 

represent bot the impact of failure-modes on .a 
machine or system of interest, as well as the heurist!c 
problem-solving behavior which can lead to rapid 
conclusions. 

This paper provides an overview of TEST’s 
approach to dia nosis. As a special urpose 
application shell, B EST provides P considerab y more 
leverage to developers than can be gained through the 
use of general purpose heuristic classification systems. 

1. lntrsduction 

TEST1 (Troubleshooting Expert System Tool) is an 
aoolication shell that provrdes a domain-independent 
d/agnostic problem solver together with a library of 
schematic prototy es. 
object ty es and t R 

These prototypes constitute the 

T 
e structure required by each domarn- 

soecific EST knowledge base. TEST applications for 
factory floor machines: vehicles, and computers, are 
currently in development. 

TEST fills a design niche halfway between rule- 
based and causal-model a proaches. On one hand, 
TEST uses a weak causa P model to describe causal 
links between failure-modes; and on the other, TEST 
uses rules to constrain and direct diagnostic reasoning. 
Te:zIt IS, ;tie;pyi retsopects, similar to several other 

develop problem-solvin 
architectures suitable to the troubleshooting ii tas 
[Bylander et a/. 83, Hofmann et al. 861. TEST differs, 
however, in offering a more differentiated knowledge 
&&yd a more powerful set of control and inference 

. 

‘TEST is an internal name used at Carnegie Group Inc. TEST is 
implemented in Mnowledge Craffm. 

TEST’s a preach has resulted in a design that 
meets severa P functional 
troubleshootin 

ii 
shell. 

requirements for an effective 

represent bot 
Most critically, TEST can 

the impact of failure-modes on a 
machine or system of interest, as well as the heuristic 
problem-solvin 
conclusions. 8 

behavior which can lead to rapid 
he underlying representation and the 

problem-solving method are easily understood by both 
design engineers and diagnostic technicians. This has 
had a positive im act 
Q$!;;rns bu!lt rn TIE !i T 

on knowledge acquisition. 

marntarnable 
ham be;;oEndb;ltbe more 

Emycin-like [\/anMelle et al. 811 belief rules. 
using 

TEST’s approach to diagnosis is explained in the 
following sections. The first provides a context of 
previous work in the field, identi 

8 
ing limitations which 

motivated the development of TE T. The followin 
P 

two 
sections present overviews of the TEST 
base and dia nostic 

know edge 
roblem solver. The subsequent 

section descn es TE T’s unique use of rules. 8 z! 

Many features of the TEST s stem 

! 
K 

cannot be 
covered within the sco e of t is 
comprehensive account of 

paper. A 
EST’s functionalrty can be 

found in [Pepper and Mullins 861; TEST’s approach to 
repair is described in [Pepper and Kahn 871; and finally, 
development of a s ecralized 
workbench is reporte 8 

knowledge acquisition 
in [Kahn 871. 

Many diagnostic expert s stems have been built 
over the last several years. 4! ypically, these syst;:; 
use either evidential or causal reasoning. 
evidential reasoning systems, such as Mycin 
761 and Mud [Kahn and McDermott 861, are \ 

Shortliffe 
ru e-based. 

Each rule represents a belief association between 
evidential considerations and a conclusion warranted by 
the evidence. There may be many rules bearing on the 
same conclusion. A numeric al orithm is used to 
compose evidence provided by eat a applicable rule. A 

. . 

sup art 
P 

differential diagnosis, or in the case of 

a 
ua itative reasonin 
iagnosis. Casnet [ bt 

a simulative approach to 
eiss et a/. 78 used a probabilistic 

model of causal relations to d 
Bayesian analysis. 

rive an essentially 
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Problem solvers which rely on causal models to 
support differential diagnosis or simulation typically run 
into three problems when used to reason about 
machine faults. The first occurs during development, as 
the task of constructing large models becomes bogged 
down in complexity and issues of behavioral validation. 
The second occurs at run-time as these techniques 

ult in intensive search and, as a 

ln troubleshooting tasks, a diagnostic conclusion is 
reached by performing a test or series of tests that 

to isolate an underlying failure-mode. 
is less a matter of evaluating the evidence in 
than of effectively searching for a conclusive 

e this search can often be explained in terms 

strategies. 

base maintenance, 
ive problem-solving 

nlike rule-based diagnostic systems, 
ntic network of schematic objects, cal 

T uses a 
rames or 

!a a &e-to link. 

At the bottom of the hierarchy, as shown, are failure- 
modes of individual components, e. . 
power supplies ( W502, X501, MO5 , 

the particular 

tube. 
7 or the picture 

Intermediate failure-modes typically represent 
functional failures which are causal consequences of 
component failures, e.g. “Hum in LV 
classes of failures, e.ge, “LV Power !i 

ower supply”, or 

Yl 
upply Problem”. 

f intermediate failure-modes are common. 
ca networks have 4 to 10 levels of concerns, 

01% bccur on occasion. 

paths, as in CASTE 

determining the occurrence of a failure-mode. Rk?S 
represent a variety of contingent actions rather than 
evidence/belief propositions al as is typical in 
Emycin-like diagnostic systems. $Ts use of rules is 
described in section 4. Parts provide descri tors of 
parts that are associated with component fai ures or P 
with repairs. 

- DUE-TO 

-1: A failure-mode hierarchy 
?he example used here is based on television troubleshooting 

as described by Tinnell [Tinnell 74 1. Actual TEST knowledge bases 
are proprietary to Carnegie Group clients. 
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Decision-nodes provide a mechanism for integrating 
conventional diagnostic decision logic into the otherwise 
failure-mode oriented knowledge base. Although T 
can generate its own decision logic from the failure- 
mode knowledge base, domain ex erts often prefer to 

& 
rovide the decision lo 

% 
ic directly. e his ma be done by 

uilding a decision-no e network. Each ecision-node 6y 
represents a test together with branches to other tests 
contingent on the result of the first. Decision-node 
networks typically terminate with the failure-modes that 
could cause the problem associated with the network’s 
entry point. 

Knowledge base maintenance is facilitated by 
clustering information around failure-modes (see figure 
2-2). Since the failure-mode is the key concept in most 
troubleshooting tasks, such aggregates provide an 
easily understood and readily accessible structure. 
Inspection of a failure-mode provides direct access to 
associated tests, repairs and documentation, as well as 
to forward and backward causal links to other failure- 
modes in the network. 

Domain-specific knowledge bases represent pre- 
compiled search spaces and serve as input to the 
problem solver. Given the failure-mode hierarchy and 
other auxiliary information, the problem solver searches 
for a diagnostic conclusron, interactively prompting a 
technician, or sampling sensors and databases as 
necessary to obtain evidence to proceed with the 
diagnostic session. The search space can be 
dynamically altered by rules (see below) sensitive to 
information acquired during a diagnostic session. 
Knowledge en ineers can also choose the appropriate 
level of granu arity St for the representation of causal 
chains, thus constraining the depth of search required 
prior to hypothesizin 
preferred order in w ?I 

a particular failure. Moreover, the 
ich to consider candidate causes 

may be easily specified. 

Figure 2-2: A failure-mode aggregate 
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In general terms, the problem solver pursues a 
depth-first recursive strate 
or determined failure. B 

y starting with an observed 
t seeks the cause of an 

occurring failure-mode considering candidate causes 
(other failure-modes referenced in the due-to slot of 
this failure-mode. A andidate causes can have three 
states: confirmed, disconfirmed, and unknown. Failure- 
modes are confirmed when the problem solver 
determines that they have occurred. 

If a candidate cause is disconfirmed, the problem 
solver moves on to consider another ossibilit 
candidate cause is confirmed, the pro g y- If .a lem so ver will 
consequently seek to determine Its causes. This 
procedure continues until a terminal failure-mode is 
Identified. Terminal failures, those without instantiated 
due-to slots, are typically repairable faults. 

Following the example in figure 2-1, let’s assume 
that a short raster was observed. In this case, the 
problem solver would first consider “defective power 
supply diode’” as the cause of “short raster”. If this were 
ruled out, it would proceed to consider a “vertical swee 
failure”. If a vertical swee 
or was unknown, the pro E 

failure were to be confirme g , 

consider its causes -- 
!em solver would proceed to 

‘vertical sweep generator failure” 
and “vertical output failure.” 

As new failure-modes come up for consideration, 
the problem solver chooses a method of confirmation 
provided by the knowledge base developer. It may be a 
direct test, a rule-based inference procedure, or the 
disconfirmatory recognition (modus to//ens) that a 
necessary consequent of the failure-mode had not 
occurred. If the failure-mode cannot be confirmed or 
disconfirmed, the problem solver will nevertheless 
proceed to examine potential causes. If a failure-mode 
can have multiple causes, the diagnostic analysis will 
not terminate until all potential candidate causes are 
evaluated. 

Apart from the failure-mode hierarchy, the problem 
solver can also be driven by decision-nodes, and data- 
gathering activities. The former are used to represent 
conventional diagnostic decision logic. Decision-nodes 
represent steps in a conditional sequence of tests which 
terminate in a decision to rule-out, confirm, or focus on 
a failure-mode. TEST’s ability to integrate test- and 
failure-mode-driven diagnosis has been critical to 
knowledge acquisition as both approaches are typically 
prevalent in the procedures used by technicians and 
referenced by manuals. 

Data-gathering activities are used when tests 
should be run as a matter of convenience rather than 
for immediate diagnostic purposes. For instance, if 
dismantling is required for a particular test, it may be 
desirable to run other tests that require similar 
dismantling before reassembly, even though the latter 
tests are not of immediate relevance. 

Additional1 , 
unsolicited Y 

TEST allows users to volunteer 

than e 
B 

in ormation, as well as to dynamg;eJli 
the course of the diagnosis. 

troub eshooting s 
is desirable to ta tl 

stems tend to be highly interactive, it 
e advantage as much as possible of 

user input, particularly the human ability to notice 
diagnostically critical information, even though the 
system may not be asking for it. Moreover, the hunches 

of experienced technicians can often prove valuable in 
re&rcing diagnostic search. Supporting 
inout for both hunches and observations, 
makes use of its human partners, but is perceived as 
being more user friendly and less frustrating to use. 

Finally, the problem solver supports a belief 
maintenance s 

Y 
stem that is used to provide explanation 

and an undo acility. The latter provides the ability to 
selectively modify any prior input. The impact of a 
modificatron is propagated through the belief system, 
possibly resulting in a change of diagnostic focus. 

The troubleshooting task, like any other, can be 
characterized in terms of standard procedures and 
default knowled 
considerations % 

~l~hrch must be a!tered when special 

dynamically than 
Rules provide the means to 

e’a knowledge base under specified 
circumstances. w ules are conditional ex ressions of 
the form “IF (condition) THEN (action).” Tp he condition 
is a boolean combination of (schema, slot, value) triples, 
each of which which re 
the knowledge base. + 

resent a piece of information in 
he action specifies a value or 

change in value for a schema/slot location. Rules may 
be characterized as immediate or on-focus. Immediate 
rules act as demons, firing as soon as their conditions 
are satisfied. On-focus, or goal-driven, rules are 
evoked only when the rule is relevant to the current 
focus of the problem solver. 

Causal-~odeii~ rules are used to alter the 
failure-mode f! hierarc v. For instance. when the LV 
power supply is under consideration, and it is known 
that the television can emit sound, X501 and R505 can 
be removed from the due-to slot of possible causes, as 
these ower sources disable the audio on failure (See 
figure !i -1 ). Conjunctive causes are similarly modelled 
with causal-modeling rules. That is, a failure-mode 
could be added to a due-to list only under the condition 
that another failure-mode has been determined to 
occur. 

roceduaal rules are used to modify the several 
kinds of procedural and methodological knowledge that 
mav be reoresented in a TEST knowledae base. Most 
critical are’the rules used 
decision-node networks. 

to modify the fglure-node and 

Background information acquired durin execution 
may suggest altering the order in which far ure-modes 9 
are considered. This is typically done to more close1 
reflect evidential impact on the likelihoods for eat IfI 
failure-mode. A rule would be used, for instance, to 
indicate that “a bad picture tube” should be considered 
prior to “LV power supply problem” when the raster is 
missing and the picture tube is of a series known to be 
defective. In the context of machine diagnosis, such 
rules provide a mechanism for ensuring that failures due 
to part wear are investigated first for older machines, 
but only after manufacturing parts problems in the case 
of newer machines. 
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Procedural rules also facilitate the process of 
modeling conventional decision logic. Rules overlaid on 
decision-nodes may alter the transition 

P 
ath to a 

subsequent decision, or respecify which fai ure-modes 
are confirmed or disconfirmed as new information is 
acquired at each decision-node. Thus, TEST permits 
developers to focus on the default decision logic without 
worrying about working aty ical 

8 
alternatives into the 

network. These are easily a ded as special case rules. 

Finally, relevance rules may be used to filter the 
knowledge base by deactivating objects. Rules 
attached to failure-modes, for instance, can remove the 
failure-mode from consideration dunng a diagnosis. 
This feature is used, for example, in multiple model 
knowledge bases when the component part associated 
with a failure-mode is not actually used in the model (or 
manufacturing run) represented by the unit presenting 
the fault. 

T provides an effective approach to modeling 
troubleshooting knowledge. Domain-dependent 
knowledge bases can be built using concepts familiar to 
diagnostic technicians and design engineers. Default 
diagnostic strategies as well as s 

R 
ecial case heuristics 

can be easily represented in the nowledge base, with 
the causal relations that underlie diagnostic reasoning. 
By structuring the knowledge base around the failure- 
mode cohcept, si 

% 
nificant modularity and maintainability 

is achieved. TES offers a unique mixture of schematic 
and rule-based reasoning. 

Unlike most of its predecessors, TEST provides 
mechanisms for readily expressing search behavior, as 
well as for adapting search to newly acquired 
information. Because search behavior is determined by 
heuristic rules, TEST’s performance is better than 
systems which must corn ute alternative hypotheses on 
the basis of a causal mo cr el. 

Several features of TEST may car over well to the 
design of other application shells. These include the 
distinction between model and roblem solver, as 
opposed to knowledge base and in erence engine. The P 
problem solver knows much more about the task 
domain and the model assumes much more about the 
problem solver than the knowledge base/inference 
engine distinction implies. The problem solver is driven 
by the model, and as such, preference for vanous 
control strate ies can be expressed in the model. 
Secondly, TE 8 T’s success as a knowled e engineering 
tool has de ended on the use of 8 omain-familiar 
concepts. T is has enabled knowledge engineers to R 
easily map information from expert sources into the 
knowled 
import o the representations used. Finally, a model 7 

e base; and to explain to their experts the 

within which heuristic search constraints may be 
expressed appears critical to the performance of model- 
driven systems. 
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