From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

TEST: A MODEL-DRIVEN APPLICATION SHELL

Gary S. Kahn, Al Kepner, and Jeff Pepper
Carnegie Group Inc.
Pittsburgh, Pa. 15219

Abstract

TEST (Troubleshooting Expert System Tool) is an
application shell that provides a domain-independent
diagnostic problem solver_together with a library of
schematic prototypes. TEST fills a design niche
halfway between rule-based and causal-model
approaches.

This approach has resulted in a design that meets
several functional requirements for an _effective
troubleshooting shelt. = Most critically, TEST can
represent both the impact of failure-modes on a
machine or system of interest, as well as the heuristic
problem-solving behavior which can lead to rapid
conclusions.

This paper provides an overview of TEST's
approach to diaglposis. As a special purpose
application shell, TEST provides considerably more
leverage to developers than can be gained through the
use of general purpose heuristic classification systems.

1. Introduction

TEST! (Troubleshooting Expert System Tool) is an
application shell that provides a domain-independent
diagnostic problem solver together with a library of
schematic prototyﬁes. These prototypes constitute the
object types and the structure required by each domain-
specific TEST knowledge base. TEST applications for
factory floor machines, vehicles, and computers, are
currently in development.

TEST fills a design niche halfway between rule-
based and causal-model approaches. On one hand,
TEST uses a weak causal model to describe causal
links between failure-modes; and on the other, TEST
uses rules to constrain and direct diagnostic reasoning.
TEST is, in some respects, similar to several other
recent attempts to develop problem-solvin
architectures suitable to the troubleshooting tasl
[Bylander et al. 83, Hofmann et al. 86]. TEST differs,
however, in offering a more differentiated knowledge
base and a more powerful set of control and inference
options.

1TEST is an internal name used at Carnegie Group Inc. TEST is
implemented in Knowledge Craft'™.

814 Expert Systems

TEST's a{)proach has resulted in a design that
meets several functional requirements for an effective
troubleshooting shell. Most critically, TEST can
represent both the impact of failure-modes on a
machine or system of interest, as well as the heuristic
problerq-solvmgl_ behavior which can lead to rapid
conclusions. The underlying representation and the
problem-solving method are easily understood by both
design engineers and diagnostic technicians. This has
had a positive impact on knowledge acquisition.
Systems built in TEST have been found to be more
easily maintainable than those built using
Emycin-like [VanMelle et al. 81] belief rules.

TEST's approach to diagnosis is explained in the
following sections. The first provides a coniext of
previous work in the field, identifying limitations which
motivated the development of TEST. The following two
sections present overviews of the TEST knowledge
base and diagnostic problem solver. The subsequent
section describes TEST’s unique use of rules.

Many features of the TEST system cannot be
covered within the scope of this paper. A
comprehensive account of TEST’'s functionality can be
found in [Pepper and Mullins 86]; TEST'S approach to
repair is described in [Pepper and Kahn 87]; and finally,
development of a specialized knowledge acquisition
workbench is reported in [Kahn 87}.

" 1.1. Limits of Current Approaches

Many diagnostic expert systems have been built
over the last several years. Typically, these systems
use either evidential' or causal reasoning. = Most
evidential reasoning systems, such as Mycin [Shortliffe
76) and Mud [Kahn and McDermoit 86), are rule-based.
Each rule represents a belief association between
evidential considerations and a conclusion warranted by
the evidence. There may be many rules bearing on the
same conclusion. A numeric algorithm is used to
compose evidence provided by each applicable rule. A

simple decision rule is used to identify the best or most
warranted conclusion. Causal systems, such as Abel
[Patil et al. 81], Caduceus[Pople 82], and more
recently the qualitative reasoning models of Dekleer and
Brown i}DeKleer and Brown 84}, among others, operate
on the basis of an underlying model of entities and the
explicit representation of causal, behavioral, and/or
structural relations. These models are used either to
support differential diagnosis, or in the case of
ualitative reasoning, a simulative approach to
iagnosis. Casnet [Weiss et al. 78] used a probabilistic
model of causal relations to drive an essentially
Bayesian analysis.

While the above approaches have proved quite
effective within certain domains, none have proved ideal
for troubleshooting tasks, such as machine fault
diagnosis. The Emycin approach provided by many
expert system shells typically proves inadequate for
three reasons. First, troubleshooting expertise is less a
matter of generating beliefs on the basis of observed
symptoms, than of using observations as they become
known to effectively guide one {o conclusive tests.
Thus, the simple representational semantics of
evidential belief rules typically does not correspond to
the way experts think about diagnosing failure-modes.
Secon 3’ the backward-chaining control strategy
provided within this paradigm does not easily allow
systems to modify the order in which candidate failures
are considered as new evidence bearing on expected
likelihoods is accumulated. Finally, pure rule-based
approaches tend to require exhaustive search. This is
impractical for many troubleshooting tasks where there
are a large number of problems which could explain any
particular failure-mode.

Problem solvers which rely on causal models to
support differential diagnosis or simulation typically run
into three problems when used to reason about
machine faults. The first occurs during development, as
the task of constructing large models becomes bogged
down in complexity and issues of behavioral validation.
The second occurs at run-time as these techniques
typically result in intensive search and, as a
consequence, inadequate performance. Finally,
domain-specific heuristic solutions to the performance
problem are often difficult to achieve within the strong
representational and control constraints of these
problem-solving architectures.

In troubleshooting tasks, a diagnostic conclusion is
reached by performing a test or series of tests that
combine to isolate an underlying failure-mode.
Expertise is less a matter of evaluating the evidence in
aggreg\r;tte than of effectively searching for a conclusive
test. While this search can often be explained in terms
of differential diagnosis, much of the underlying
reasoning is "precompiled” on the part of diagnostic
technicians. TEST takes advantage of this to greatl
reduce diagnostic search. At the same time TES

reserves a "weak" causal model with several benefits.
n particular it supporis knowledge base maintenance,
explanation, as well as several effective problem-solving
strategies.

2. The Knowledge Base

Unlike rule-based diagnostic systems, TEST uses a
semantic network of schematic objects, called frames or
schemata, to represent its key concepts [Pepper and
Kahn 86]. These concepts are typically familiar to the
troubleshooting technicians and design engineers who
provide the expertise TEST is designed to model. Most
critical is the failure-mode. A failure-mode represents a
deviation of the unit under test from its standard of
correct performance. Failure-modes are organized in a
causal hierarchy. At the top of the hierarchy are
observabie problems, e.g., raster display problems, as
shown in figure 2-1.2 Each node is linked to a
disjunctive set of its possible ceus- ia a due-fo link.

2The example used here is based on television troubleshooting
as described by Tinneli [Tinnell 71]. Actual TEST knowledge bases
are proprietary to Carnegie Group clients.

At the bottom of the hierarchy, as shown, are failure-
modes of individual components, e.g. the particular
power supplies (R502, X501, RSOS?, or the picture
tube. Intermediate failure-modes typically represent
functional failures which are causal consequences of
component failures, e.g. "Hum in LV power supply”, or
classes of failures, e.g., "LV Power Supply Problem"”.
Many levels of intermediate failure-modes are common.
Typical TEST networks have 4 to 10 levels of concerns,
though much deeper networks occur on occasion.
Networks can be used to represent both taxonomic
hierarchies, as in CSRL [Bylander et al. 83], and causal
paths, as in CASTER [Thompson and Clancey 86].

Other conceptual objects within TEST include
questions, tests, test-procedures, repair-
procedures, rules, decislon-nodes, and parts. Each
of these concepts has an obvious mapping into the
troubleshooting domain. Questions are simply queries
to users which result in factual responses. Tests
represent manual or sensor-based tests. Test-
procedures describe sequences of tests, each of which
must be carried out before the diagnostic significance of
the overall procedure can be evaluated. Repair-
procedures describe corrective actions to pursue upon
determining the occurrence of a failure-mode. Rules
represent a variety of contingent actions rather than
evidence/belief propositions alone, as is typical in
Emycin-like diagnostic systems. TEST’s use of rules is
described in section 4. Parts provide descriptors of
parts that are associated with component failures or
with repairs.

Raster
Problem

Missing Bent Short Narrow
Raster Raster Raster Raster

Detactive
Pow. Sply

Vertical
Sweep
Failure

Humin LV
Power Supply

R502] [x501 1 ["ns0s
ilter failure ‘ I fitter failure ! lillteriallure

LV Power
Supply
y

R502 X501 R505
Power Sply Power Sply Power Sply

————& DUE-TO

Bad Picture ert. Sweep Vertical
Tube Generator QOutput Failur:

Figure 2-1: A failure-mode hierarchy

Kahn, Kepner, and Pepper 815

Decision-nodes provide a mechanism for integrating
conventional diagnostic decision logic into the otherwise
failure-mode oriented knowledge base. Although TEST
can generate its own decision logic from the failure-
mode knowledge base, domain experts often prefer to
grovide the decision logic directly. This may be done by

uilding a decision-node network. Each decision-node
represents a test together with branches to other tests
contingent on the result of the first. Decision-node
networks typically terminate with the failure-modes that
could cause the problem associated with the network’s
entry point.

Knowledge base maintenance is facilitated by
clustering information around failure-modes (see figure
2-2). Since the failure-mode is the key concept in most
troubleshooting tasks, such aggregates provide an
easily understood and readily accessible structure.
Inspéction of a failure-mode provides direct access to
associated tests, repairs and documentation, as well as
to forward and backward causal links to other failure-
modes in the network.

3. The Diagnostic Problem Solver

Domain-specific knowledge bases represent pre-
compiled search spaces and serve as input to the
problem solver. Given the failure-mode hierarchy and
other auxiliary information, the problem solver searches
for a diagnostic conclusion, interactively prompting a
technician, or sampling sensors and databases as
necessary to obtain evidence to proceed with the
diagnostic session. The search space can be
dynamically altered by rules (see below) sensitive to
information acquired during a diagnostic session.
Knowledge engineers can also choose the appropriate
level of granularity for the representation of causal
chains, thus constraining the depth of search required
prior to hypothesizing a particular failure. Moreover, the
preferred order in which to consider candidate causes
may be easily specified.

Failure-
Mode

ALWAYS-LEADS-TO

Documentation as-doc

®

FAILURE-
MODE

as fepalrs | =

Fallure Decision|
Mods Node

Fallure
Mode

S/

Fallure
Mods

/Y
z:::ston]

Decision
Node

/

Failure
Mode

¥

Figure 2-2: A failure-mode aggregate

816 Expert Systems

In general terms, the problem solver pursues a

depth-first recursive strate?y starting with an observed
or determined failure. |t seeks the cause of an
occurring failure-mode considering candidate causes
(other failure-modes) referenced in the due-fo slot of
this failure-mode. andidate causes can have three
states: confirmed, disconfirmed, and unknown. Failure-
modes are confirmed when the problem solver
determines that they have occurred.

If a candidate cause is disconfirmed, the problem
solver moves on to consider another gossibilit . Ifa
candidate cause is confirmed, the problem solver_will
consequently seek to determine its causes. This
procedure continues until a terminal failure-mode is
identified. Terminal failures, those without instantiated
due-to slots, are typically repairable faults.

Following the example in figure 2-1, let's assume
that a short raster was observed. In this case, the
problem solver would first consider "defective power
supply diode" as the cause of "short raster". If this were
ruled out, it would proceed to consider a "vertical swee
failure”. If a vértical sweep failure were to be confirmed,
or was unknown, the problem soiver would proceed to
consider its causes -- "vertical sweep generator failure”
and "vertical output failure."

As new failure-modes come up for consideration,
the problem solver chooses a method of confirmation
provided by the knowledge base developer. It may be a
direct test, a rule-based inference procedure, or the
disconfirmatory recognition (modus tollens) that a
necessary consequent of the failure-mode had not
occurred. [f the failure-mode cannot be confirmed or
disconfirmed, the problem solver will nevertheless
proceed to examine potential causes. If a failure-mode
can have multiple causes, the diagnostic analysis will
not terminate until all potential candidate causes are
evaluated.

3.1. Additional Features

Apart from the failure-mode hierarchy, the problem
solver can also be driven by decision-nodes, and data-
gathering activities. The former are used to represent
conventional diagnostic decision logic. Decision-nodes
represent steps in a conditional sequence of tests which
terminate in a decision to rule-out, confirm, or focus on
a failure-mode. TEST’s ability to integrate test- and
failure-mode-driven diagnosis”™ has been critical to
knowledge acquisition as both approaches are typically
prevalent in the procedures used by technicians and
referenced by manuals.

Data-gathering activities are used when tests
should be run as a matter of convenience rather than
for immediate diagnostic purposes. For instance, if
dismantling is required for a particular test, it may be
desirable to run other tests that require similar
dismantling before reassembly, even though the latter
tests are not of immediate relevance.

Additionally, TEST allows users to volunteer
unsolicited information, as well as to dynamically
change the course of the diagnosis. Since
troubleshooting sxstems tend to be highly interactive, it
is desirable to take advantage as much as possible of
user input, particularly the human ability to notice
diagnostically critical information, even though the
system may not be asking for it. Moreover, the hunches

of experienced technicians can often prove valuable in
reducing diagnostic search. Supporting voluntary user-
input for both hunches and observations, TEST not only
makes use of its human partners, but is perceived as
being more user friendly and less frustrating to use.

Finally, the problem solver supports a belief
maintenance system that is used to provide explanation
and an undo facility. The latter provides the ability to
selectively modify ‘any prior input. The impact of a
modification is propagated through the belief system,
possibly resulting in a change of diagnostic focus.

4, Using Rules

The troubleshooting task, like any other, can be
characterized in terms of standard procedures and
default knowled%e which must be altered when special
considerations hold. Rules provide the means to
dynamically change a knowledge base under specified
circumstances. ules are conditional expressions of
the form "IF (condition) THEN (action)." The condition
is a boolean combination of (schema, slot, value) triples,
each of which which represent a piece of information in
the knowledge base. The action specifies a value or
change in value for a schema/slot location. Rules may
be characterized as immediate or on-focus. Immediate
rules act as demons, firing as soon as their conditions
are satisfied. On-focus, or goal-driven, rules are
evoked only when the rule is relevant to the current
focus of the problem solver.

TEST allows knowledge-base developers to
characterize four types of dynamic alterations to a
default knowledge bases. Derivational rules are used
to recognize when failure-modes may be confirmed or
ruled-out, as well as to infer factual data. In particular,
as new information is collected, the problem solver
updates data-driven rules that monitor for co-occurring
conditions that would lead to the immediate recognition
of a failure-mode.

Causal-modelinﬁ rules are used to alter the
failure-mode hierarchy. For instance, when the LV
power supply is under consideration, and it is known
that the television can emit sound, X501 and R505 can
be removed from the due-to slot of possible causes, as
these gower sources disable the audio on failure (See
figure 2-1). Conjunctive causes are similarly modelled
with causal-modeling rules. That is, a failure-mode
could be added to a due-to list only under the condition
that another failure-mode has been determined to
occur.

Procedural rules are used to modify the several
kinds of procedural and methodological knowledge that
may be represented in a TEST knowledge base. Most
critical are the rules used to modify the failure-node and
decision-node networks.

Background information acquired during execution
may suggest altering the order in which failure-modes
are considered. This is typically done to more closetl
reflect evidential impact on the likelihoods for eac
failure-mode. A rule would be used, for instance, to
indicate that "a bad picture tube" should be considered
prior to "LV power supply problem” when the raster is
missing and the picture tube is of a series known to be
defective. In the context of machine diagnosis, such
rules provide a mechanism for ensuring that failures due
to part wear are investigated first for older machines,
but only after manufacturing parts problems in the case
of newer machines.

Kahn, Kepner, and Pepper 817

Procedural rules also facilitate the process of
modeling conventional decision logic. Rules overlaid on
decision-nodes may alter the ftransition path to a
subsequent decision, or respecify which failure-modes
are confirmed or disconfirmed as new information is
acquired at each decision-node. Thus, TEST permits
developers to focus on the default decision logic without
worrying about working at)g)ical alternatives into the
network. These are easily added as special case rules.

Finally, relevance rules may be used to filter the
knowledge base by deactivating objects. Rules
attached to failure-modes, for instance, can remove the
failure-mode from consideration during a diagnosis.
This feature is used, for example, in multiple model
knowledge bases when the component part associated
with a failure-mode is not actually used in the model (or
nﬁar}ufellcturing run) represented by the unit presenting
the fault.

5. Conclusion

TEST provides an effective approach to modeling
troubleshooting knowledge. Domain-dependent
knowledge bases can be built using concepts familiar to
diagnostic technicians and design engineers. Default
diagnostic strategies as well as special case heuristics
can be easily represented in the knowledge base, with
the causal relations that underlie diagnostic reasoning.
By structuring the knowledge base around the failure-
mode concept, significant modularity and maintainability
is achieved. TEST offers a unique mixture of schematic
and rule-based reasoning.

Unlike most of its predecessors, TEST provides
mechanisms for readily expressing search behavior, as
well as for adapting search to newly acquired
information. Because search behavior is determined by
heuristic rules, TEST's performance is better than
systems which must compute alternative hypotheses on
the basis of a causal model.

Several features of TEST may carry over well to the
design of other application shells. These include the
distinction between model and problem solver, as
opposed to knowledge base and interence engine. The
problem solver knows much more about the task
domain and the model assumes much more about the
problem solver than the knowledge base/inference
engine distinction implies. The problem solver is driven
by the model, and as such, preference for various
control strategies can be expressed in the model.
Secondly, TEST's success as a knowledge engineering
tool has depended on the use of domain-familiar
concepts. This has enabled knowledge engineers to
easily map information from expert sources into the
knowledge base; and to explain to their experts the
import of the representations used. Finally, a model
within which heuristic search constraints may be
expressed appears critical to the performance of model-
driven systems.

818 Expert Systems

References

[Bylander et al. 83] Bélander, T., Mittal, S., and
Chandrasekaran, B. CSRL: A Language for Expert
%ystems for Diagnosis. In Proceedings of the

Ighth International Joint Conference on Artificial
Intelligence. 1983.

[DeKleer and Brown 84] DeKleer, J. and Brown, J.S. A

Qualitative Physics Based on Confluences.
Artificial Intelligence , 1984.

[Hofmann et al. 86] Hofmann, M., Caviedes, J., Bourne,
J., Beale, G., and Broderson, A. Building Expernt
Systems for Repair Domains. Expert Systems 3(1) ,
January, 1986.

[Kahn 87] Kahn, G.S. From Application Shell to
Knowledge Acquisition System. In Proceedings of
International Joint Conference on Arftificial
Intelligence. 1987.

[Kahn and McDermott 86] Kahn, G.S., and McDermott,
.11.9 gge MUD System. JEEE Expert 1(1) , Spring,

[Patil et al. 81] Patil, R.P., Szolovits, P., and Schwartz,
W. Causal Understanding of Patient lllness in
Medical Diagnosis. In Proceedings of the Seventh

International Joint Conference on Artificial
Intelligence. 1981.
[Pep(ger and Kahn 86] Pepper, J. and Kahn,

Knowledge Craft: An Environment for Rapid
Prototyping of Expert Systems. In Proceedings of
gﬁlga% 8Igtelllgence for the Automotive Industry.

[Peplger and Kahn 87] Pepper, J. and Kahn, G.S.

epair Strategies in a Diagnostic Expert System. In
Proceedings of International Joint Conference on
Artificial Intelligence. 1987.

[Pep[ger and Mullins 86] Pepper, J. and Mullins,

. Adificial Intelligence Applied to Audio Systems

Diagnosis. In_Proceedings of the International
Conference on Transportation Electronics. 1986.

[Pople 82] Pople, H. Heuristic Methods for imposing
Structure on llI- structured Porblems. In Szolovits,
P. (editorzl,vAmf/cial Intelligence in Medicine, pages
119-190. Westview Press, 1982.

[Shortliffe 76] Shortliffe, E. Computer-Based Medical
Consultation: Mycin. Elsevier, 1976.

[Thompson and Clancey 86] Thompson, T. and
Clancey, W. J. A Qualitative Modelling Shell for
I:é%%ess Diagnosis. IEEE Software 3(2) , March,

[Tinnell 71] Tinnell, R.W. Television Symtom Diagnosis.
Howard W. Sams & Co., 1971.

[VanMelle et al. 81] Van Melle, W., Scott, A.C., Bennett,
J.C., and Peairs, M. A. The Emycin Manual.
Technical Report, Stanford, 1981.

[Weiss et al. 78] Weiss, S., Kerm, K.B., Kulikowski,
C.A., and Amarel, S. A Model-Based Method for
Com,auter—Aided Medical Decision-Making. Artificial
Intelligence , 1978.

