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Abstract 
The study of Qualitative Physics has concentrated on 

expressing qualitatively how the physical world behaves. 
Qualitative Physics systems accept partial descriptions of 
the world and output the possible changes that can oc- 
cur. These systems currently assume that the world is 
left untouched by human or robot agents, limiting them 
to certain types of problem solving. For instance, a state- 
of-the-art qualitative physics system can diagnose faulty 
electrical circuits but can not construct plans to rewire 
circuits to change their behavior. This paper describes an 
approach to planning in physical domains and a working 
implementation which integrates Forbus’ Qualitative Pro- 
cess Engine (QPE) with a temporal interval-based plan- 
ner. The approach involves compiling QPE expressions 
describing a physical domain into a set of operators and 
rules of the planner. The planner can then construct plans 
involving processes, existence of individuals, and changes 
in quantities. We describe how the compilation is per- 
formed, the types derivable plans, and current limitations 
in our approach. 

1 Introduction 

The study of Qualitative Physics has concentrated on express- 
ing qualitatively how the physical world behaves. Qualitative 
Physics systems accept partial descriptions of the world and 
output the possible changes that can occur. These systems cur- 
rently assume that the world is left untouched by human or 
robot agents, limiting them to certain types of problem solving. 
For instance, a state-of-the-art qualitative physics system can 
diagnose faulty electrical circuits but can not construct plans to 
rewire circuits to change their behavior. 

This paper describes an approach to planning in physical 
domains and a working implementation which integrates a par- 
ticular qualitative physics system, the Qualitative Process En- 
gine (QPE) [F or b us, 861, with a planner (TPLAN) based on 
[Allen and Koomen, 831. The implementation, called the Op- 
erator Compiler, accepts QPE expressions describing a physical 
domain and compiles a set of TPLAN operators for achievmg 
goals that require processes to occur. For instance, given the def- 
inition for a liquid flow process. the Operator Compiler outputs 
an operator for creating liquid flows. This operator can solve 
goals matching the effects of liquid flow, such as the increased 
amount of liquid in a container. 

The Operator Compiler could prove useful in applications, 
due to its integration two powerful systems. QPE envisions what 
can happen in the world from various states, while TPLAN plans 
changes in the world. Furthermore, once a domain physics has 
been constructed and debugged using QPE, adding planning 

capabilities requires little work. The user can design the physics 
without worrying about the task of planning. Formalizing the 
rest of the domain (such as an agent’s possible actions) then 
requires some use of the physics vocabulary (to relate actions to 
processes, for instance). 

Sections 2 and 3 describe aspects of QPE and TPLAN rele- 
vant to understanding what the Operator Compiler does. The 
Operator Compiler is presented in section 4, followed by discus- 
sion in section 5. 

2 Introduction to Q 

QPE is an implementation of Qualitative Process Theory (QPT) 
(Forbus, 841. We use the term QPT to refer to the language with 
which one models physical processes, ignoring other aspects such 
as the deductions it sanctions. Examples of processes are liquid 
flow, heat flow, and boiling. QPT provides a syntax for describ- 
ing individuals in a domain and for expressing how processes 
become active and how they affect individuals. Examples of in- 
dividuals are containers, fluid paths, liquid sources, quantities 
of individuals, and processes. Like other qualitative physics the- 
ories, QPT models quantities as a partial order and uses sym- 
bolic, rather than numeric values. Thus, inequalities such as 
(GREATER-THAN quantity1 quantitya) are meaningful, but mea- 

sured amounts are irrelevant. Quantities have two components: 
amount (signified by A) and derivative (signified by D). 

QPT defines a process as a collection of five components: 
individuals involved in the process, preconditions (outside of 
QPT’s knowledge) on the process, quantity conditions (inequal- 
ities), relations asserted during the process, and influences the 
process puts on quantities. Figure 1 shows a typical process 
definition. 

3 Introduction to TPL 

TPLAN is an implementation of the temporal interval-based 
planner described in [Allen and Koomen, 831. TPLAN keeps a 
database of facts qualified by intervals over which they hold. 
The planner runs on top of a time logic described in :Allen, 831, 
which maintains temporal relationships between intervals. Ta- 
ble 1 shows the possible values a relation can have. 

TPLAN adopts the following syntactic conventions: 

1. Intervals are denoted by symbols starting with “9’. 

2. Variables are denoted by symbols starting with “?“. 
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Process : (LIQUID-FLOW ?src-can ?dst-can ?liq) 
Individuals : (CONTAINER ?src-can) 

(CONTAINER ?dst-can) 
(CONTAINED-LIQUID (CL ?liq ?src-can)) 
(FLUID-PATH (FP ?src-can ?&t-can)) 

Preconditions: (VALVE-OPEN (FP ?src-can ?dst-can)) 
quantity Conditions: 

(GREATER-THAM (A (PRESSURE ?src-can)) 
(A (PRESSURE ?dst-can) ) ) 

Relations : (IJUANTITY FLOW-RATE) 
(q= FLOW-RATE (- (PRESSURE ?src-can) 

(PRESSURE ?dst-can))) 
Influences: (I+ (AMOUNT-OF (CL ?liq ?dst-can)) 

(A FLOW-RATE)) 
(I- (AMOUNT-OF (CL ?liq ?src-can)) 

(A FLOW-RATE)) 

Figure 1: Definition of Process Liquid Flow 

Table 1: Seven Possible Values of Interval Relations and their 
Inverses 

Value Description Inverse Description 
:< before :> after 
:M meets :MI met bv I I I .a 

:O’ I overlaps 1 :OI overlapped by 
3 starts I :SI / * started by 
:F finishes :FI finished by 
:D ! during :DI encloses 4 .- .- equals .- .- equals 

3. The temporal relation between two intervals is expressed 
as a disjunction and written as a list. For instance, (:< :>) 
means “is before or after.” 

4. Facts are paired with the interval over which they hold. 
Thus, (OH A TABLE) $IHTERVAL~ denotes a fact 
(ON A TABLE) which holds over $IHTERVAL~. 

5. Two facts paired with the same interval is equivalent to 
assigning them separate intervals constrained to be (:=). 

These syntactic conventions are used in operator and rule defi- 
nitions. We describe each in turn. 

3.1 Operators 

An operator defines an action the agent can perform to change 
the world. TPLAN adopts the model of action presented in 
‘Allen and Koomen, 831, with temporally qualified patterns de- 
scribing operator preconditions and effects. For instance, Fig- 
ure 2 defines an operator PICKUP which can be applied to an 
object if it is clear and resting on something. PICKUP’s effects 
clear the object’s old location. The constraints field constrains 
the temporal relations among facts unifying with the precondi- 
tions and effects. 

3.2 Rules 

Rules-model temporal laws of the domain TPLAN uses rules as 
backward chaining operators for solving goals, as well as forward 

OPERATOR pickup 
PRECONDITIONS: (clear ?object) $clear-object 

(on ?object ?surface) $on 
EFFECTS: (pickup ?object ?surface) $pickup 

(clear ?surface) $clear-surface 
CONSTRAINTS : $clear-obj ect ( :M) $pickup 

$on (:O) $pickup 
$on ( : M) $clear-surf ace 

Figure 2: Definition of Operator PICKUP 

chaining, temporally constrained inference rules. Thus, if we 
express QPT processes as rules, we can both infer processes and 
plan for their occurence. 

RULE 
Antecedents: (ON ?x ?y) $on-xy 

(ON ?y ?z) $on-yz 
Temporal Conditions: 
Exists (INTERSECTION $on-xy $on-yz) 

called $intersection 
Consequents: (OVER ?x ?z) $intersection 
Consequent Constraints: 

Figure 3: A Temporally Qualified Inference Rule 

Rule definitions are similar to operator definitions, with an- 
tecedents behaving like operator preconditions, consequents be- 
having like operator effects, and consequent constraints behav- 
ing like operator constraints. The additional field: temporal con- 
ditions, places preconditions on the temporal relations among 
facts matching the antecedents. Our time logic supports tempo- 
ral intersections, allowing us to inhibit a rule until antecedents 
are known to intersect (meaning their relation is a subset of (:S 
:SI :F :FI :D :DI :0 :OI :=)) and to assert consequents over 
their intersection. Figure 3 demonstrates these features. Given 
(ON A B) and (ON B C) w h ose intervals intersect, (OVER A C) 
is asserted over their intersection. 

perator Compiler 

Qualitative physics systems reason about situations containing 
fixed sets of individuals. For instance, given a pot containing 
water resting on a burner, QPE can envision what might happen 
depending on the relative temperatures of the water and the 
burner. However, QPE can not envision what might happen 
if we move the pot off of the burner at some point unless we 
attempt to model agent actions in process definitions. While 
QPE does support such modeling (implemented as additional 
assumptions), the support is temporally weak and multiplies the 
size of the envisionment of possible world states by the number 
of consistent action combinations. 

The Operator Compiler is an attempt to avoid this combina- 
torics by modeling actions within TPLAN, whose search through 
possible states is more constrained than QPE’s envisionment. 
The Operator Compiler approach involves three steps: 

1. The user models in QPT the individuals and physical pro 
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cesses of the domain. 

2. The Operator Compiler analyzes the model of step 1 and 
compiles operators and rules for constructing plans involv- 
ing processes and individuals. 

3. The user models in TPLAN the actions an agent can per- 
form in the domain and the temporal laws of the domain. 
These actions must be made relevant to the output of 
step 2. 

For example, assume we want to model a kitchen and gen- 
erate plans involving liquid flows. In step 1 we model a liquid 
flow process and individuals such as containers, liquid sources, 
and valved fluid paths. In step 2, the Operator Compiler would 
output operators and rules which include the means by which a 
liquid flow is initiated. In step 3 we construct TPLAN rules that 
describe a simple Blocks World geometry for the kitchen and re- 
late the geometry to the process descriptions. For instance, one 
rule establishes an exterior fluid path from faucets to any con- 
tainer underneath it. We then model actions relevant to the 
geometry and the physics. For instance, one geometric operator 
would permit us to move objects. Other operators would allow 
us to modify certain quantities in the physics, such as the valve 
position of faucets. 

The vocabulary produced by these three steps can now be 
used to solve specific planning scenarios. For example, we could 
assert container POT1 initially on the counter, liquid source 
FAUCET having a non-zero amount of water, and liquid drain 
SINK underneath FAUCET and have TPLAN solve any of the 
following problems: 

1. Increase the amount of water in POT1 

2. Increase the pressure in POT1 

3. Fill the sink with water 

These problems may seem trivial. However, our running ex- 
amples require complex plans such as the one traced in Figure 4, 
since our QPT domain model is detailed. 

Figure 4 shows examples of the backward-chaining use of 
rules generated by the Operator Compiler. One rule is used 
to initiate a liquid flow to solve the initial goal. Later, a rule 
is used to infer that the faucet is a container if it is a liquid 
source. Such rules are simple to construct from QPT expressions 
because of QPT’s notion of causality. Since QPT processes are 
encoded as a set of preconditions and effects, creating a rule for 
achieving a process is straightforward. Similarly, QPT enforces a 
causal ordering on all quantity changes, permitting compilation 
of simple operators for influencing quantities. 

Sections 4.1 and 4.2 describe the primary expressions of QPT 
and their compilation into TPLAN rules. Section 4.3 describes 
rules and operators applicable to all QPT domain models. 

4.1 Compilation of Entity Definitions 

.A QPT entity definition is an expression of the form 
(DEFENTITY <pattern> <consequents>) where 
<consequents> are asserted in every situation in which 
<pattern> is true. Thus, if we have the following definition 

“OC” marks rules and operators constructed by the Operator Compiler 
’ ‘USER’ ’ marks rules and operators constructed by the user 
!les goale are indented under the solution which introduces 

COAL, Increase the amount of water in the liquid state in POT1 
SOLUTION Apply OC rule that increases POTl’s amount of 
water by creating a liquid flow from some source and fluid 
path Over the course of planning, “some source” is unified 
with FAUCET The rest of the trace assumes this 

GOAL Make POT1 a container 
SOLUTION Unify this goal with an initial given. 
GOAL Make FAUCET a container 
SOLUTION Apply OC rule which says liquid sources are 
containers 

GOAL. Wake FAUCET a liquid source 
SOLUTION Unify this goal with an initial given 

GOAL Get some water znto container FAUCET. 
SOLUTION Unify this goal rlth an Initial given 
GOAL Find a flurd path from FAUCET to POT1 
SOLUTION Apply an OC rule which says exterior fluid paths 

are fluid paths 
GOAL Find an exterior fluid path from FAUCET to POT1 
SOLUTION. Apply a USER rule which says that an exterior 
fluid path exists when a container is under FAUCET 

GOAL. Make POTl’s location be underneath FAUCET 
SOLUTION. Apply USER operator to move POT1 from the 
counter to underneath FAUCET. 

GOAL Make FAUCET’B pressure be greater than POTl’s pressure 
SOLUTION. Unify this goal with an initial given 
GOAL: Make the fluid path’s valve position be open 
SOLUTION. Apply USER operator for opening FAUCET’s valve 

Figure 4: Trace of a Plan for Adding Water to POT1 

(DEFEIITIT~ (CONTAINER ?x) 
(HAS-quAfJT1~y ?x VOLUME) 
(GREATER-THA~I (A (voLUJ~E ?x)) 2~~0) 

and assert (CONTAINER POTI) in certain situations, QPE’s 
inference engine will assert the following in those situations: 

(HAS-QUAIITITY POT1 VOLUME) 
(GREATER-THA~J (A (voLu14E eoT1)) ZERO) 

Expressmg a DEFENTITY as a TPLAN rule is simple. The 
antecedent and consequents are left unchanged, except that the 
consequents hold over the same time interval as the antecedent. 
In the above example, (HAS-qUA!JTITY POT1 VOLUME) and 
(GREATER-THAN (A (VOLUME ~0~111 ZERO) would hold over the 
interval over which (CONTAINER POTI) holds. For TPLAN the 
above DEFENTITY would be expressed as: 

RULE 
Antecedents : (CONTAINER ?X) $C 
Consequents: 

(HAS-QUAHTITY ?X VOLUME) $C 
(GREATER-THAN (A (VOLUME ?x)) ZERO) $c 

Since TPLAN treats rules as backward chaining operators 
as well as forward chaining inference rules, TPLAN could use 
the above rule to achieve goals which unify with any of the con- 
sequents. 

This scheme is used on all consequents except for qualitative 
proportionality assertions. For instance, the following definition 

(DEFENTITY (CONTAII;ED-LI~UID ?x) 
(HAS-qUAHTITY ?X LEVEL) 
(QPROP (LEVEL TX) (AMOUNT-OF ?x))) 

gives contained liquids a quantity LEVEL which increases when 
the A;.IOU:;T-OF contained liquid increases and decreases when 
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AMOUNT-OF decreases. Encoding the QPROP as a rule consequent 
would not tell the planner that it can increase a contained liq- 
uid’s LEVEL by increasing the AMOUNT-OF contained liquid (and 
likewise for decreasing the LEVEL). Thus, the above PEFEN- 
TITY is instead compiled into the following rules. 

RULE Process-Liquid-Flow 
Antecedents: 

(CONTAINER ‘src-can) $CI 
(CONTAINER ‘dst-can) 3~2 
<FLUID-PATH (FP 7src-can ‘dst-can)) Sfp 

RULE 
Antecedents:'(CONTAINED-LIPUID ?X) $cl 
Consequents: (HAS-qUANTITY ?X LEVEL) $cl 

RULE 
Antecedents: 
(CONTAINED-LIqUID ?X> $cl 
(INCREASING (AM~UMT-OF ?x) mwsE) $inc 

Temporal Conditions: 

(CONTAINED-LIQUID (CL 711q ?src-can)) 3~1 
(VALVE-OPEN (FP ?src-can 7dst-can)) ho 
(GREATER-THAN 

(A (PRESSURE-DIFFERENCE (FP ?src-can ‘dst-can))) ZERO) Sgt 
Temporal Condltlons, 

Exists (INTERSECTION $cl ScZ Ofp Scl Svo $gt) called Sint 
Consequent. 

(LIQUID-FLOW ‘src-can ‘dst-can ?liq) $int 
(IJUANTITY (LOCAL-QUANTITY FLOW-RATE 

(LIQUID-FLOW ‘src-can ‘dst-can ‘liq) 1) $lnt 
(INCREASING (ACCOUNT-OF (CL ?liq ?dst-can)) 

(A (LOCAL-QUANTITY FLOW-RATE 

Exists (INTERSECTION $cl $inc) called $int 
Consequents: (INCREASING (LEVEL ?X) ?cAusE) $int 

RULE 

(LIQUID-FLOW ?erc-can ?det-can ?liq)))) $mt 
(DECREASING (AMOUNT-OF (cr. ?liq tsrc-can)) 

(A (LOCAL-QUANTITY FLOW-RATE 
(LIQUID-FLOW ‘src-can ‘dst-can 71iq)))) $lnt 

Antecedents: 
(CONTAINED-LIQUID ?X) $cl 
(DECREASING (AMOUNT-OF ?x) ?cAusE) $dec 

Temporal Conditions: 
Exists (INTERSECTION $cl $dec) called $int 

Consequents: (DECREASING (LEVEL ?X) ?CAUSE) $int 

Figure 5: Operator Compiled From LIQUID-FLOW Process 
Definition of Figure 1 

4.3 Universal QPE Rules 
The first rule is the result of extracting the QPROP from 

the DEFENTITY, while the second and third rules encode the 
extracted QPROP. The second rule says that if a contained liq- 
uid exists during $CL, its AMOUNT-OF is increasing over $IFJC, and 
$CL and $INC intersect, then the level is increasing over the in- 
tersection The third rule is interpreted similarly. 

QPE supports a variety of qualitative proportionality ex- 
pressions (QPROP-, Q=, and Q=) which are handled in similar 

QPE encodes a set of universal rules applicable to all physical 
domains. For instance, value X can not be both equal to Y and 
greater than Y at the same time. This can be expressed as the 
following TPLAN rule: 

RULE 
Antecedents: (equal-to ?x ?y) $= 

(greater-than ?x ?y) $> 
Consequents: $= (:< :> :M :MI) $> 

fashion. The method employed in handling these expressions in 
DEFENTITY is also used to handle their occurrence in process 
definitions, which are covered in the next section. 

4.2 Compilation of Process Definitions 

The antecedents of a process definition (DEFPROCESS) are its 
individuals, preconditions, and quantity conditions, while the 
consequents are its process form (such as the PROCESS field of 
Figure l), relations, and influences. A DEFPROCESS specifies 
that in every situation in which facts matching the antecedents 
hold, the consequents are asserted. This is expressed in TPLAN 
as a rule which asserts the process form over the temporal inter- 
section of the antecedents. For instance, in Figure 5 the liquid 
Bow process holds over $INT, the temporal intersection of the 
antecedent intervals ($cl, $c2, $fp, $cl; $vo, and $gt). 

The temporal constraints on relations and influences depend 
on whether they refer to any local quantities of the process. 
While local quantities hold only during the process, other quan- 
tities may exist before, during, and after the process. Thus, re- 
lations and influences involving local quantities are asserted over 
the intersection of antecedents, while all others are asserted over 
unique intervals containing the intersection. Each of the effects 
in Figure 5 refer to local quantity FLOW-RATE; thus, they hold 
over $INT. 

As with DEFENTITY, we extract all qualitative proportion- 

The Operator Compiler enforces consistency during planning 
by including such rules in its compilation of QPT domains. Also 
included are a set of operators for planning changes in quantities. 
Section 4.1 described the encoding of qualitative proportionali- 
ties, in which rules of the form “If X is increasing then Y is in- 
creasing” are output for each qualitative proportionality. These 
rules allow us to construct operators which achieve inequalities 
between two quantities by achieving an increase or decrease in 
one of them. For instance, if we are given that quantity X is 
greater than quantity Y, we can solve the goal of making X 
equal to Y by either decreasing X or increasing Y. The latter is 
encoded as follows: 

OPERATOR 
Preconditions: (greater-than ?x ?y) $> 

(increasing ?y ?cause) $increasing 
Consequents: (equal-to ?x ?y> $= 
Constraints: $> (:M) $= 

$increasing (:M :FI :DI :O) $= 

As an example of planning changes in quantities, suppose 
that we are given a faucet and stoppered sink containing water. 
Our goal is to make the water level be greater than SOME- 
LEVEL. Assume that our domain includes a liquid flow process 
and a qualitative proportionality stating that a contained liq- 
uid’s water level increases when the amount of water increases. 
Figure 6 traces the plan which solves our goal. 

ality assertions from the DEFPROCESS and create rules which 
express each of them. Thus, the Q= assertion of Figure 1 would 
be compiled into separate rules. 

5 Discussion 

We have described an Operator Compiler which solves simple 
planning problems in physical domains. The compiler handlr 
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Under these assumptions, if a liquid flow into a sink posi- 
tively influences the water level and a liquid drain negatively 
influences the water level, assumption #l fools the planner into 
thinking the water level is both rising and lowering. Further- 
more, assumption #2 fools the planner into thinking the water 
level will become greater than the sink’s maximum level and also 
lower than the minimum level, assuming that these inequalities 
are introduced as goals during planning. 

These assumptions are made by the operators described in 
section 4.3 for achieving inequalities. Although they are not 
valid, they do solve simple problems involving changes in quan- 
tities. For instance, given some water draining out of a sink 
and a goal of filling the sink, the planner can use the inequality 
operators to generate a plan which turns on the faucet. The so- 
lution is partial since nothing specifies that the flow rate must be 
greater than the drain rate. While such rate ambiguities could 
be resolved through QPE simulation, many problems involving 
rates and quantity changes are too complex for our compiled 
rules, since a rule’s effects on a quantity depend on the con- 
text. Unfortunately, formulating context-dependent rules and 
operators is beyond TPLAN’s capabilities. 

One limitation of the Operator Compiler arises from its de- 
pendence on QPT. The compiler is bound by the limits to which 
QPT can be used to model the physical world. For instance, 
QPT currently does not provide a mechanism for modeling sets 
of interacting individuals. (Process definlGons explicitly state 
which individuals affect the process.) Such imprc~vements to 
QPT would require additional complexity in the compiler and 
planner. 


