
Compiling Plan Operators from Domains
Expressed in Qualitative recess Theory

John C. Mogge
Qualitative Reasoning Group

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract
The study of Qualitative Physics has concentrated on

expressing qualitatively how the physical world behaves.
Qualitative Physics systems accept partial descriptions of
the world and output the possible changes that can oc-
cur. These systems currently assume that the world is
left untouched by human or robot agents, limiting them
to certain types of problem solving. For instance, a state-
of-the-art qualitative physics system can diagnose faulty
electrical circuits but can not construct plans to rewire
circuits to change their behavior. This paper describes an
approach to planning in physical domains and a working
implementation which integrates Forbus’ Qualitative Pro-
cess Engine (QPE) with a temporal interval-based plan-
ner. The approach involves compiling QPE expressions
describing a physical domain into a set of operators and
rules of the planner. The planner can then construct plans
involving processes, existence of individuals, and changes
in quantities. We describe how the compilation is per-
formed, the types derivable plans, and current limitations
in our approach.

1 Introduction

The study of Qualitative Physics has concentrated on express-
ing qualitatively how the physical world behaves. Qualitative
Physics systems accept partial descriptions of the world and
output the possible changes that can occur. These systems cur-
rently assume that the world is left untouched by human or
robot agents, limiting them to certain types of problem solving.
For instance, a state-of-the-art qualitative physics system can
diagnose faulty electrical circuits but can not construct plans to
rewire circuits to change their behavior.

This paper describes an approach to planning in physical
domains and a working implementation which integrates a par-
ticular qualitative physics system, the Qualitative Process En-
gine (QPE) [F or b us, 861, with a planner (TPLAN) based on
[Allen and Koomen, 831. The implementation, called the Op-
erator Compiler, accepts QPE expressions describing a physical
domain and compiles a set of TPLAN operators for achievmg
goals that require processes to occur. For instance, given the def-
inition for a liquid flow process. the Operator Compiler outputs
an operator for creating liquid flows. This operator can solve
goals matching the effects of liquid flow, such as the increased
amount of liquid in a container.

The Operator Compiler could prove useful in applications,
due to its integration two powerful systems. QPE envisions what
can happen in the world from various states, while TPLAN plans
changes in the world. Furthermore, once a domain physics has
been constructed and debugged using QPE, adding planning

capabilities requires little work. The user can design the physics
without worrying about the task of planning. Formalizing the
rest of the domain (such as an agent’s possible actions) then
requires some use of the physics vocabulary (to relate actions to
processes, for instance).

Sections 2 and 3 describe aspects of QPE and TPLAN rele-
vant to understanding what the Operator Compiler does. The
Operator Compiler is presented in section 4, followed by discus-
sion in section 5.

2 Introduction to Q

QPE is an implementation of Qualitative Process Theory (QPT)
(Forbus, 841. We use the term QPT to refer to the language with
which one models physical processes, ignoring other aspects such
as the deductions it sanctions. Examples of processes are liquid
flow, heat flow, and boiling. QPT provides a syntax for describ-
ing individuals in a domain and for expressing how processes
become active and how they affect individuals. Examples of in-
dividuals are containers, fluid paths, liquid sources, quantities
of individuals, and processes. Like other qualitative physics the-
ories, QPT models quantities as a partial order and uses sym-
bolic, rather than numeric values. Thus, inequalities such as
(GREATER-THAN quantity1 quantitya) are meaningful, but mea-

sured amounts are irrelevant. Quantities have two components:
amount (signified by A) and derivative (signified by D).

QPT defines a process as a collection of five components:
individuals involved in the process, preconditions (outside of
QPT’s knowledge) on the process, quantity conditions (inequal-
ities), relations asserted during the process, and influences the
process puts on quantities. Figure 1 shows a typical process
definition.

3 Introduction to TPL

TPLAN is an implementation of the temporal interval-based
planner described in [Allen and Koomen, 831. TPLAN keeps a
database of facts qualified by intervals over which they hold.
The planner runs on top of a time logic described in :Allen, 831,
which maintains temporal relationships between intervals. Ta-
ble 1 shows the possible values a relation can have.

TPLAN adopts the following syntactic conventions:

1. Intervals are denoted by symbols starting with “9’.

2. Variables are denoted by symbols starting with “?“.

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Process : (LIQUID-FLOW ?src-can ?dst-can ?liq)
Individuals : (CONTAINER ?src-can)

(CONTAINER ?dst-can)
(CONTAINED-LIQUID (CL ?liq ?src-can))
(FLUID-PATH (FP ?src-can ?&t-can))

Preconditions: (VALVE-OPEN (FP ?src-can ?dst-can))
quantity Conditions:

(GREATER-THAM (A (PRESSURE ?src-can))
(A (PRESSURE ?dst-can)))

Relations : (IJUANTITY FLOW-RATE)
(q= FLOW-RATE (- (PRESSURE ?src-can)

(PRESSURE ?dst-can)))
Influences: (I+ (AMOUNT-OF (CL ?liq ?dst-can))

(A FLOW-RATE))
(I- (AMOUNT-OF (CL ?liq ?src-can))

(A FLOW-RATE))

Figure 1: Definition of Process Liquid Flow

Table 1: Seven Possible Values of Interval Relations and their
Inverses

Value Description Inverse Description
:< before :> after
:M meets :MI met bv I I I .a

:O’ I overlaps 1 :OI overlapped by
3 starts I :SI / * started by
:F finishes :FI finished by
:D ! during :DI encloses 4 .- .- equals .- .- equals

3. The temporal relation between two intervals is expressed
as a disjunction and written as a list. For instance, (:< :>)
means “is before or after.”

4. Facts are paired with the interval over which they hold.
Thus, (OH A TABLE) $IHTERVAL~ denotes a fact
(ON A TABLE) which holds over $IHTERVAL~.

5. Two facts paired with the same interval is equivalent to
assigning them separate intervals constrained to be (:=).

These syntactic conventions are used in operator and rule defi-
nitions. We describe each in turn.

3.1 Operators

An operator defines an action the agent can perform to change
the world. TPLAN adopts the model of action presented in
‘Allen and Koomen, 831, with temporally qualified patterns de-
scribing operator preconditions and effects. For instance, Fig-
ure 2 defines an operator PICKUP which can be applied to an
object if it is clear and resting on something. PICKUP’s effects
clear the object’s old location. The constraints field constrains
the temporal relations among facts unifying with the precondi-
tions and effects.

3.2 Rules

Rules-model temporal laws of the domain TPLAN uses rules as
backward chaining operators for solving goals, as well as forward

OPERATOR pickup
PRECONDITIONS: (clear ?object) $clear-object

(on ?object ?surface) $on
EFFECTS: (pickup ?object ?surface) $pickup

(clear ?surface) $clear-surface
CONSTRAINTS : $clear-obj ect (:M) $pickup

$on (:O) $pickup
$on (: M) $clear-surf ace

Figure 2: Definition of Operator PICKUP

chaining, temporally constrained inference rules. Thus, if we
express QPT processes as rules, we can both infer processes and
plan for their occurence.

RULE
Antecedents: (ON ?x ?y) $on-xy

(ON ?y ?z) $on-yz
Temporal Conditions:
Exists (INTERSECTION $on-xy $on-yz)

called $intersection
Consequents: (OVER ?x ?z) $intersection
Consequent Constraints:

Figure 3: A Temporally Qualified Inference Rule

Rule definitions are similar to operator definitions, with an-
tecedents behaving like operator preconditions, consequents be-
having like operator effects, and consequent constraints behav-
ing like operator constraints. The additional field: temporal con-
ditions, places preconditions on the temporal relations among
facts matching the antecedents. Our time logic supports tempo-
ral intersections, allowing us to inhibit a rule until antecedents
are known to intersect (meaning their relation is a subset of (:S
:SI :F :FI :D :DI :0 :OI :=)) and to assert consequents over
their intersection. Figure 3 demonstrates these features. Given
(ON A B) and (ON B C) w h ose intervals intersect, (OVER A C)
is asserted over their intersection.

perator Compiler

Qualitative physics systems reason about situations containing
fixed sets of individuals. For instance, given a pot containing
water resting on a burner, QPE can envision what might happen
depending on the relative temperatures of the water and the
burner. However, QPE can not envision what might happen
if we move the pot off of the burner at some point unless we
attempt to model agent actions in process definitions. While
QPE does support such modeling (implemented as additional
assumptions), the support is temporally weak and multiplies the
size of the envisionment of possible world states by the number
of consistent action combinations.

The Operator Compiler is an attempt to avoid this combina-
torics by modeling actions within TPLAN, whose search through
possible states is more constrained than QPE’s envisionment.
The Operator Compiler approach involves three steps:

1. The user models in QPT the individuals and physical pro

230 Planning

cesses of the domain.

2. The Operator Compiler analyzes the model of step 1 and
compiles operators and rules for constructing plans involv-
ing processes and individuals.

3. The user models in TPLAN the actions an agent can per-
form in the domain and the temporal laws of the domain.
These actions must be made relevant to the output of
step 2.

For example, assume we want to model a kitchen and gen-
erate plans involving liquid flows. In step 1 we model a liquid
flow process and individuals such as containers, liquid sources,
and valved fluid paths. In step 2, the Operator Compiler would
output operators and rules which include the means by which a
liquid flow is initiated. In step 3 we construct TPLAN rules that
describe a simple Blocks World geometry for the kitchen and re-
late the geometry to the process descriptions. For instance, one
rule establishes an exterior fluid path from faucets to any con-
tainer underneath it. We then model actions relevant to the
geometry and the physics. For instance, one geometric operator
would permit us to move objects. Other operators would allow
us to modify certain quantities in the physics, such as the valve
position of faucets.

The vocabulary produced by these three steps can now be
used to solve specific planning scenarios. For example, we could
assert container POT1 initially on the counter, liquid source
FAUCET having a non-zero amount of water, and liquid drain
SINK underneath FAUCET and have TPLAN solve any of the
following problems:

1. Increase the amount of water in POT1

2. Increase the pressure in POT1

3. Fill the sink with water

These problems may seem trivial. However, our running ex-
amples require complex plans such as the one traced in Figure 4,
since our QPT domain model is detailed.

Figure 4 shows examples of the backward-chaining use of
rules generated by the Operator Compiler. One rule is used
to initiate a liquid flow to solve the initial goal. Later, a rule
is used to infer that the faucet is a container if it is a liquid
source. Such rules are simple to construct from QPT expressions
because of QPT’s notion of causality. Since QPT processes are
encoded as a set of preconditions and effects, creating a rule for
achieving a process is straightforward. Similarly, QPT enforces a
causal ordering on all quantity changes, permitting compilation
of simple operators for influencing quantities.

Sections 4.1 and 4.2 describe the primary expressions of QPT
and their compilation into TPLAN rules. Section 4.3 describes
rules and operators applicable to all QPT domain models.

4.1 Compilation of Entity Definitions

.A QPT entity definition is an expression of the form
(DEFENTITY <pattern> <consequents>) where
<consequents> are asserted in every situation in which
<pattern> is true. Thus, if we have the following definition

“OC” marks rules and operators constructed by the Operator Compiler
’ ‘USER’ ’ marks rules and operators constructed by the user
!les goale are indented under the solution which introduces

COAL, Increase the amount of water in the liquid state in POT1
SOLUTION Apply OC rule that increases POTl’s amount of
water by creating a liquid flow from some source and fluid
path Over the course of planning, “some source” is unified
with FAUCET The rest of the trace assumes this

GOAL Make POT1 a container
SOLUTION Unify this goal with an initial given.
GOAL Make FAUCET a container
SOLUTION Apply OC rule which says liquid sources are
containers

GOAL. Wake FAUCET a liquid source
SOLUTION Unify this goal with an initial given

GOAL Get some water znto container FAUCET.
SOLUTION Unify this goal rlth an Initial given
GOAL Find a flurd path from FAUCET to POT1
SOLUTION Apply an OC rule which says exterior fluid paths

are fluid paths
GOAL Find an exterior fluid path from FAUCET to POT1
SOLUTION. Apply a USER rule which says that an exterior
fluid path exists when a container is under FAUCET

GOAL. Make POTl’s location be underneath FAUCET
SOLUTION. Apply USER operator to move POT1 from the
counter to underneath FAUCET.

GOAL Make FAUCET’B pressure be greater than POTl’s pressure
SOLUTION. Unify this goal with an initial given
GOAL: Make the fluid path’s valve position be open
SOLUTION. Apply USER operator for opening FAUCET’s valve

Figure 4: Trace of a Plan for Adding Water to POT1

(DEFEIITIT~ (CONTAINER ?x)
(HAS-quAfJT1~y ?x VOLUME)
(GREATER-THA~I (A (voLUJ~E ?x)) 2~~0)

and assert (CONTAINER POTI) in certain situations, QPE’s
inference engine will assert the following in those situations:

(HAS-QUAIITITY POT1 VOLUME)
(GREATER-THA~J (A (voLu14E eoT1)) ZERO)

Expressmg a DEFENTITY as a TPLAN rule is simple. The
antecedent and consequents are left unchanged, except that the
consequents hold over the same time interval as the antecedent.
In the above example, (HAS-qUA!JTITY POT1 VOLUME) and
(GREATER-THAN (A (VOLUME ~0~111 ZERO) would hold over the
interval over which (CONTAINER POTI) holds. For TPLAN the
above DEFENTITY would be expressed as:

RULE
Antecedents : (CONTAINER ?X) $C
Consequents:

(HAS-QUAHTITY ?X VOLUME) $C
(GREATER-THAN (A (VOLUME ?x)) ZERO) $c

Since TPLAN treats rules as backward chaining operators
as well as forward chaining inference rules, TPLAN could use
the above rule to achieve goals which unify with any of the con-
sequents.

This scheme is used on all consequents except for qualitative
proportionality assertions. For instance, the following definition

(DEFENTITY (CONTAII;ED-LI~UID ?x)
(HAS-qUAHTITY ?X LEVEL)
(QPROP (LEVEL TX) (AMOUNT-OF ?x)))

gives contained liquids a quantity LEVEL which increases when
the A;.IOU:;T-OF contained liquid increases and decreases when

Hogge 231

AMOUNT-OF decreases. Encoding the QPROP as a rule consequent
would not tell the planner that it can increase a contained liq-
uid’s LEVEL by increasing the AMOUNT-OF contained liquid (and
likewise for decreasing the LEVEL). Thus, the above PEFEN-
TITY is instead compiled into the following rules.

RULE Process-Liquid-Flow
Antecedents:

(CONTAINER ‘src-can) $CI
(CONTAINER ‘dst-can) 3~2
<FLUID-PATH (FP 7src-can ‘dst-can)) Sfp

RULE
Antecedents:'(CONTAINED-LIPUID ?X) $cl
Consequents: (HAS-qUANTITY ?X LEVEL) $cl

RULE
Antecedents:
(CONTAINED-LIqUID ?X> $cl
(INCREASING (AM~UMT-OF ?x) mwsE) $inc

Temporal Conditions:

(CONTAINED-LIQUID (CL 711q ?src-can)) 3~1
(VALVE-OPEN (FP ?src-can 7dst-can)) ho
(GREATER-THAN

(A (PRESSURE-DIFFERENCE (FP ?src-can ‘dst-can))) ZERO) Sgt
Temporal Condltlons,

Exists (INTERSECTION $cl ScZ Ofp Scl Svo $gt) called Sint
Consequent.

(LIQUID-FLOW ‘src-can ‘dst-can ?liq) $int
(IJUANTITY (LOCAL-QUANTITY FLOW-RATE

(LIQUID-FLOW ‘src-can ‘dst-can ‘liq) 1) $lnt
(INCREASING (ACCOUNT-OF (CL ?liq ?dst-can))

(A (LOCAL-QUANTITY FLOW-RATE

Exists (INTERSECTION $cl $inc) called $int
Consequents: (INCREASING (LEVEL ?X) ?cAusE) $int

RULE

(LIQUID-FLOW ?erc-can ?det-can ?liq)))) $mt
(DECREASING (AMOUNT-OF (cr. ?liq tsrc-can))

(A (LOCAL-QUANTITY FLOW-RATE
(LIQUID-FLOW ‘src-can ‘dst-can 71iq)))) $lnt

Antecedents:
(CONTAINED-LIQUID ?X) $cl
(DECREASING (AMOUNT-OF ?x) ?cAusE) $dec

Temporal Conditions:
Exists (INTERSECTION $cl $dec) called $int

Consequents: (DECREASING (LEVEL ?X) ?CAUSE) $int

Figure 5: Operator Compiled From LIQUID-FLOW Process
Definition of Figure 1

4.3 Universal QPE Rules
The first rule is the result of extracting the QPROP from

the DEFENTITY, while the second and third rules encode the
extracted QPROP. The second rule says that if a contained liq-
uid exists during $CL, its AMOUNT-OF is increasing over $IFJC, and
$CL and $INC intersect, then the level is increasing over the in-
tersection The third rule is interpreted similarly.

QPE supports a variety of qualitative proportionality ex-
pressions (QPROP-, Q=, and Q=) which are handled in similar

QPE encodes a set of universal rules applicable to all physical
domains. For instance, value X can not be both equal to Y and
greater than Y at the same time. This can be expressed as the
following TPLAN rule:

RULE
Antecedents: (equal-to ?x ?y) $=

(greater-than ?x ?y) $>
Consequents: $= (:< :> :M :MI) $>

fashion. The method employed in handling these expressions in
DEFENTITY is also used to handle their occurrence in process
definitions, which are covered in the next section.

4.2 Compilation of Process Definitions

The antecedents of a process definition (DEFPROCESS) are its
individuals, preconditions, and quantity conditions, while the
consequents are its process form (such as the PROCESS field of
Figure l), relations, and influences. A DEFPROCESS specifies
that in every situation in which facts matching the antecedents
hold, the consequents are asserted. This is expressed in TPLAN
as a rule which asserts the process form over the temporal inter-
section of the antecedents. For instance, in Figure 5 the liquid
Bow process holds over $INT, the temporal intersection of the
antecedent intervals ($cl, $c2, $fp, $cl; $vo, and $gt).

The temporal constraints on relations and influences depend
on whether they refer to any local quantities of the process.
While local quantities hold only during the process, other quan-
tities may exist before, during, and after the process. Thus, re-
lations and influences involving local quantities are asserted over
the intersection of antecedents, while all others are asserted over
unique intervals containing the intersection. Each of the effects
in Figure 5 refer to local quantity FLOW-RATE; thus, they hold
over $INT.

As with DEFENTITY, we extract all qualitative proportion-

The Operator Compiler enforces consistency during planning
by including such rules in its compilation of QPT domains. Also
included are a set of operators for planning changes in quantities.
Section 4.1 described the encoding of qualitative proportionali-
ties, in which rules of the form “If X is increasing then Y is in-
creasing” are output for each qualitative proportionality. These
rules allow us to construct operators which achieve inequalities
between two quantities by achieving an increase or decrease in
one of them. For instance, if we are given that quantity X is
greater than quantity Y, we can solve the goal of making X
equal to Y by either decreasing X or increasing Y. The latter is
encoded as follows:

OPERATOR
Preconditions: (greater-than ?x ?y) $>

(increasing ?y ?cause) $increasing
Consequents: (equal-to ?x ?y> $=
Constraints: $> (:M) $=

$increasing (:M :FI :DI :O) $=

As an example of planning changes in quantities, suppose
that we are given a faucet and stoppered sink containing water.
Our goal is to make the water level be greater than SOME-
LEVEL. Assume that our domain includes a liquid flow process
and a qualitative proportionality stating that a contained liq-
uid’s water level increases when the amount of water increases.
Figure 6 traces the plan which solves our goal.

ality assertions from the DEFPROCESS and create rules which
express each of them. Thus, the Q= assertion of Figure 1 would
be compiled into separate rules.

5 Discussion

We have described an Operator Compiler which solves simple
planning problems in physical domains. The compiler handlr

232 Planning

6 Acknowledgements
GOAL: (GREATER-THAN (LEVEL SINK-WATER) SOME-LEVEL)
SOLUTION: Apply an inequality change operator which
achieves (GREATER-THAN ?X ?y) by increasing ?x.
GOAL: (INCREASE (LEVEL SINK-'JATER) ?cause)
SOLUTION: Apply QPROP rule which says (LEVEL ?x)
increases when (AMOUNT-OF ?x) increases and ?x is
a contained liquid.
GOAL: (CONTAINED-LIQUID sink-water)
SOLUTION: Unify with initial given.

Many thanks go to Ken Forbus for providing direction and use-
ful suggestions on this research. Ken Forbus and Brian Falken-
hainer gave helpful comments on this document. Discussions
with Ken Forbus, Brian Falkenhainer, Barry Smith, and John
Collins were helpful in constructing the QPT domain models
used in the examples. The Office of Naval Research supported
this project through Contract No. N00014-85-K-0225.

GOAL: (INCREASE (AMOUNT-OF srNK-wATER))
SOLUTION: Apply liquid flow operator with
destination SINK and source FAUCET. References

Figure 6: Trace of a Plan for Changing a Quantity
[Allen, 831 Allen, J.F., “Maintaining Knowledge about Tempo-

ral Intervals”, Communications of the ACM, vol. 26, pp.
832-843.

most syntactic features of QPT. It has been used to compile rules
from QPT models of liquid flow, heat flow, and boiling which
have allowed generation of simple plans (such as that shown in
Figure 1) involving processes, individuals, and changes in quan-
tities. This section describes its current limitations.

The Operator Compiler’s primary shortcoming is its overly
optimistic strategy for solving goals involving changes in quan-
tities. The strategy makes several naive assumptions:

1. Any positive influence on a quantity causes it to increase,
while any negative influence on a quantity causes it to
decrease.

2. Any quantity inequality can be achieved by increasing or
decreasing one of the two quantities.

[Allen and Koomen, 831 Allen, J.F. and Koomen, J.A., “Plan-
ning Using a Temporal World Model”, Proceedings of the
Eighth International Joint Conference on Artificial Intelli-
gence, pp. 741-747.

[Forbus, 811 Forbus, K.D., “Qualitative Reasoning about Phys-
ical Processes”, Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, August, 1981.

[Forbus, 841 Forbus, K.D., “Qualitative Process Theory”, Arti-
ficial Intelligence 24, 1984.

[Forbus, 861 Forbus, K.D., “The Qualitative Process Engine”,
Technical Report UEUCDCS-R-86-1288, University of Illi-
nois. Department of Computer Science, December, 1986.

Under these assumptions, if a liquid flow into a sink posi-
tively influences the water level and a liquid drain negatively
influences the water level, assumption #l fools the planner into
thinking the water level is both rising and lowering. Further-
more, assumption #2 fools the planner into thinking the water
level will become greater than the sink’s maximum level and also
lower than the minimum level, assuming that these inequalities
are introduced as goals during planning.

These assumptions are made by the operators described in
section 4.3 for achieving inequalities. Although they are not
valid, they do solve simple problems involving changes in quan-
tities. For instance, given some water draining out of a sink
and a goal of filling the sink, the planner can use the inequality
operators to generate a plan which turns on the faucet. The so-
lution is partial since nothing specifies that the flow rate must be
greater than the drain rate. While such rate ambiguities could
be resolved through QPE simulation, many problems involving
rates and quantity changes are too complex for our compiled
rules, since a rule’s effects on a quantity depend on the con-
text. Unfortunately, formulating context-dependent rules and
operators is beyond TPLAN’s capabilities.

One limitation of the Operator Compiler arises from its de-
pendence on QPT. The compiler is bound by the limits to which
QPT can be used to model the physical world. For instance,
QPT currently does not provide a mechanism for modeling sets
of interacting individuals. (Process definlGons explicitly state
which individuals affect the process.) Such imprc~vements to
QPT would require additional complexity in the compiler and
planner.

