
The Deductive Synthesis of Imperative LISP Programs

Zohar Manna
Stanford University
Stanford, California

Abstract

A framework is described for the automatic synthesis of
imperative programs, which may alter data structures
and produce destructive side effects as part of their in-
tended behavior. A program meeting a given specifica-
tion is extracted from the proof of a theorem in a variant
of situational logic, in which the states of a computation
are explicit objects. As an example, an in-place reverse
program has been derived in an imperative LISP, which in-
cludes assignment and destructive list operations (rplacu
and rplacd) .

Introduction

For many years we have been working on the design of a system
for program synthesis, i.e., the automatic derivation of a program
from a given specification. For the most part, we have been con-
centrating on the synthesis of applicative programs, i.e., programs
that return an output but produce no side effects (Manna and
Waldinger [80], [87a]). H ere we consider the synthesis of impera-
tive programs, i.e., programs that alter data structures as part of
their intended behavior. We adapt the same techniques that we
have used for applicative programs.

We have developed a deductive approach, in which the con-
struction of a program is regarded as a task in theorem proving.
For applicative programs, we prove a theorem that establishes the
existence of an output object meeting the specified conditions. The
proof is restricted to be sufficiently constructive to indicate a com-
putational method for finding the desired output. This method
provides the basis for a program that is extracted from the proof.

The difficulty in adapting this deductive approach to imper-
ative programs is that, if data structures are altered, a sentence
that is true at a certain state of the computation of a program
may become false at other states. In the logical theories in which

This research was supported by the National Science Founda-
tion under Grants DCR-82-14523 and DCR-85-12356, by the De-
fense Advanced Research Projects Agency under Contract
N00039-84-C-0211, by the United States Air Force Office of Sci-
entific Research under Contract AFOSR-85-0383, by the Office
of Naval Research under Contract N00014-84-C-0706, by United
States Army Research under Contract DAJA-45-84-C-0040, and
by a contract from the International Business Machines Corpora-
tion.

Richard Waldinger
SRI International
Menlo Park, California

we usually prove theorems, a sentence does not change its truth-
value. A time-honored approach to this problem is to employ a
situational logic, i.e., one in which states of the computation are
explicit objects. Predicate and function symbols each have a state
as one of their arguments, and the truth of a sentence may vary
from one state to another.

In this paper, we adapt situational logic to the synthesis of
imperative programs. We find that conventional situational logic
is inadequate for this task, but formulate a new situational logic,
called imperative-program theory, that overcomes this inadequhy.
To be specific, we shall set down a theory of imperative LISP, which
includes the destructive operators rplaca and rplacd and the as-
signment operator setq. We intend, however, that other versions
of imperative-program theory shall be equally applicable to other
languages.

Historical Notes

Situational logic was introduced into the computer science liter-
ature by McCarthy [63] and was also applied to describe imper-
ative programs by Burstall [69]. It was used for the synthesis of
imperative programs in the systems QAS (Green 1691) and PROW
(Waldinger and Lee [69]). We have used situational logic ear:
lier to describe ALGOL-like programming languages (Manna and
Waldinger [Sl]). R ecently, we have adapted situational logic to be
a framework for automatic planning (Manna and Waldinger [87b]).

Imperative LISP has recently been described (in terms of “mem-
ory structures”) in the thesis of Mason [86]. We have translated
many of Mason’s notions into the situational logic framework.
Mason applies his framework to proving properties of programs
and to program transformation, but does not deal with synthesis
from specifications. We also treat the assignment operation (setq),
which Mason omits.

The Trouble with Conventional Situational Logic

To construct a program in conventional situational logic (e.g., the
QA3 logic), one proves the existence of a final state in which the
specified conditions will be true. One regards the initial state
as the input and the final state as the output of the imperative
program. In other words, one uses the same approach one would
use for applicative programs, treating states as objects that can
be passed around like numbers or lists.

The trouble with this approach is that one can construct pro-
grams that can perform more than one operation on the same state,
contrary to the physical fact that, once an operation has been per-
formed on a state, that state no longer exists. For example, it is
possible to construct programs such as

Manna and Waldinger 155

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

bad(x) X= then’ setqjz, x, so) . .
else setq(y, 2,230).

According to this program, in our initial state SO we are to
set x to x2 and then test if condition p is true. If so, in our
initial state se, we are to set z to x; otherwise, we are to set y to
x. Unfortunately, once we have changed the value of x, we have
destroyed our initial state and no longer have access to the initial
value of 2.

Imperative-program theory has been designed to overcome
this sort of difficulty. In this theory, programs are denied access
to explicit states, and always apply to the implicit current state.

Elements of Imperative-LISP Theory

In an imperative-program theory, we return the states and objects
of situational logic and introduce a new sort of entity, called the
fluent, which is best described in terms of what it does. We shall
say that evaluating a fluent in a given state produces a new state
and returns an object.

For example, evaluating the fluent setq(x, 2) in a given state s
produces a new state, similar to the given state except x has been
set to 2. The evaluation also returns an object, the number 2.

We shall think of an imperative program as computing a func-
tion that, applied to a given input object (or objects), yields a
fluent. For example, if we apply the imperative reverse program
nrev(a) to a list structure e, we obtain a fluent nrev(e); evaluating
this fluent in a given state will produce a new state (in which e is
reversed) and return an object (the reversed list structure itself).
Because we do not regard the state as an explicit input to the pro-
gram, we cannot construct programs, such as bad(x), that perform
multiple operations on the same state.

To construct a program, we prove the existence of a fluent
that, for a given initial state and input object, produces a final
state and returns an output object satisfying the specified condi-
tions. The actual program is then extracted from the proof. To
be more precise, let us restrict ourselves to imperative LISP.

In imperative-LISP
of objects.

theory we distinguish among several sorts

e States. These are states of the computation.

a Locations. These may be thought of as machine locations
or cells. We discriminate between

Pairs. These are conventional LISP cells. They
“point” to two locations.

Atoms. These are identified with storage loca-
tions. They sometimes point to a single loca-
tion, which must be a pair. The special atom
nil cannot point to anything.

Atoms and pairs are assumed to be disjoint. Locations are the
input and output objects of imperative-LISP programs.

e Abstract trees. These are finite or infinite binary trees,
which may be represented by pair locations. We identify
atoms with atomic abstract trees.

o Fluents. These may be thought of as functions mapping
states into state-location pairs. We identify each atom
with a fluent, which we describe later.

Note that the above sorts are not disjoint. In particular, atoms

are included among the locations, abstract trees, and fluents. We
can only identify atoms with storage locations because of the ab-
sence of simple aliasing in LISP; two distinct atoms are never bound
to the same storage location.

Now let us describe the functions that apply to and relate
these sorts.

Functions on Locations

If J? is a pair location and s a state,
:Zeft(& s) and :right (l, s)

are locations, called the Zeft and right components of e.

If a is an atom and s a state, and if a has some location stored
in it (i.e., a is bound), then

:store(a, s)
is the location stored in a.

Functions on Abstract Trees

We assume that we have the usual functions on abstract trees:
the tree constructor tl o t2, the functions Zeft(t) and right(t), etc.
Abstract lists are identified with abstract trees in the usual way:
the list (tl, t2, tn) is identified with the tree

t1 a (t2 a - - * 0 (t, @ niZ) - * .).
The append function tl q 22 and the reverse function rev(t) are
defined in the case in which tl and t are finite lists and t2 is a list.

Functions on Fluents

To determine the state produced and the location returned by eval-
uating a fluent in a given state, we employ the production function
“;” and the return function “Cr.

If s is a state and e a fluent,
s;e

is the state produced by evaluating e and
s:e

is the location returned by evaluating e (in state s).

We assume that the evaluation of atoms does not change the
state and returns the location stored in the atom. This is expressed
by the atom axioms,

W;U =w (production)
w:u = :store(u, w) (return)

for all states w and atoms u. (We use letters towards the end of
the alphabet as variables. Variables in axioms have tacit universal
quantification.) Evaluating the atom nil is assumed to return nil
itself, i.e.,

:store(nil, w) = nil b-4
for ah states w.

If er and es are fluents,

el ;;e2

is the fluent obtained by composing er and es. Evaluating er;;es is
the same as evaluating first er and then es. This is expressed by
the composition axioms,

w;(u1742) = (vh);~a (production)
w:(u1;;u2) = (w;u1):212 (return)

for all states w and fluents ~1 and 212.

We shall write w;q;u2;. . . ;u, and u);u~; . . . ;u+l:u, as ab-
breviations for ((~31);~s); . . . ;a, and (. . . (w;TJ~); . . . ;u,-1) x,,
respectively. For any positive integer i, we shall write Q as an ab-

156 Automated Reasoning

breviation for 2~1;;~;; . . . ;;ui, where al is taken to be ~1 itself.
Thus (by the production composition axiom),

w;Fij = w;u1; . . . ;uj
and (by the return composition axiom)

w:a; = wp1;. . . ;uj-1:uj.

The Linkage Axioms

Each function on fluents induces corresponding functions
and on locations. We begin with some definitions.

on states

A fluent function f(el, . . . , e,) adplies to fluents er, . . . ,en
and yields a fluent. A state function h(f21 , . . . , !,, s) applies to
locations er, . . . ,!, and a state s and yields a state. A location
function g(1r , . . . , !,, s) applies to locations er, . . . , !, and a state
s and yields a location.

For each fluent function f(er, . . . , e,), we introduce a cor-
responding state function ;f(er, . . . , &, s) and location function
:f(4, * . . ,f&, s). If f uses ordinary LISP evaluation mode, the
three functions are linked by the following linkage axioms:

w;f(u1, . . . ,u,) = ;f(w:‘itt, . . . ,w:Tin, w;&)
(production)

w:f(u1, . . . ,u,) = :f(w:q, . . . ,w:&, w;Tin)
(return)

for all states w and fluents ‘1~1, . . . , u,. In other words, the state
and location functions ;f and :f describe the effects of the fluent
function f after its arguments have been evaluated. The function
; f yields the state produced, and the function :f yields the location
returned, by the evaluation of f.

For example, for the fluent function setleft [conventionally
written rplaca], we have the production linkage axiom

w;setZeft(ul,uz) = ;setZeft(w:ul, w;ul:u2, w;ul;uz)
and the return linkage axiom

w:setZeft(ul, 222) = :setZeft (w:ul , w;ul :u2, w;ul ;u2),
for all states w and fluents ur and us. That is, to find the state pro-
duced and location returned by evaluating setleft (ur , uz) in state
w, first evaluate ur in state 20, then evaluate us in the resulting
state, and finally apply the corresponding state and location func-
tions ;setZeft and :setZeft in the new resulting state. The axioms
that describe ;setZeft and :setZejl are given in the next section.

While the fluent function setstore [conventionally, set] does ad-
here to ordinary LISP evaluation mode, the fluent function setstoreq
[conventionally, se@] does not; it requires that its first argument be
an atom and does not evaluate it. For this function, the production
linkage axiom is

w;setstoreq(u, v) = ;setstore(u, w:v, w;v)
and the return linkage axiom is

w:setstoreq(u, v) = :setstore(u, w:v, w;v),
for all states w, atoms u, and fluents v. These axioms take into
account the fact that evaluating an atom has no side effects.

As an informal abbreviation, we shall sometimes use “s:;e” as
an abbreviation for the string “s:e, s;e”, and “:;f(el, . . . ,e,)” as
an abbreviation for the string “:f(el, . . . , e,), ;f(el, . . . , e,)“.

Describing LISP Operators

Although we regard LISP programs as computing functions
on fluents, they are best described by providing axioms for the
corresponding state and location functions.

A fluent function f (er , . . . , e,) is said to be applicative if its
evaluation produces no side-effects other than those produced by

evaluating its arguments er, . . . ,e,. This is expressed by the ax-
iom

if (Xl, . . . , x,,w) = w (applicative)
for all locations xl, . . . , x, and states w. It follows that

w;f(w, - - *, Un)
= ;f(w:z1, . . . , w:&&, w;?in)

(by the production linkage axiom for f)
= w;Tin

(by the applicative axiom for f)
for all fluents ur, . . . , u, and states w.

For example, the fluent functions left and right [convention-
ally written car and cdr, respectively] are applicative, that is,

;keft(x, w) = w and ;right(x, w) = w
for all locations x and states w. It follows by the above reasoning
that

w;Zeft(u) = w;u and w;right(u) = w;u
for all fluents u and states 20.

The fluent function setleft alters the left component of its first
argument to contain its second argument. This is expressed pre-
cisely by the primary production axiom for setleft,

deft (x1, ;setleft(xl,x2, w)) = x2
(primary production)

for all pair locations xl, locations x2, and states w.

by
The function setleft returns

the return axiom for setleft,
its first argument ; this is expressed

for all pair
:setleft(xl, x2, w) = 21
locations xl, locations

(return)

22, and states 20.

We must also provide frame axioms indicating that the func-
tion setleft does not alter anything but the left component of its
first argument; namely,

;setZeft(xl, x2, w):u = w:u (atom)
if not (x1 = y)
then :Zeft(y,;setZeft(xl,xz, 20)) = :Zef’t(y, w)

(W fmme)
:right(y, ;setZeft(xl, x2, w)) = :right (y, w)

(right frame)
for all pair locations x1 and y, locations x2, atoms u, and states
W.

The above axioms give properties of the state and location
functions ;setZeft and :setZeft. Properties of the corresponding flu-
ent function setleft can now be deduced from the linkage axioms.

The function setright [conventionally,
ogously.

Locations and Abstract Trees

rplacd] is treated anal-

We think of each location as representing an abstract (finite or
infinite) tree. While we describe LISP functions at the state and
location level, it is often natural to express the specifications for
LISP programs at the abstract tree level. In this’section we explore
the relationship between locations and abstract trees. A formal-
ization of abstract trees is discussed in Mason [86].

We introduce a function decode (e, s) mapping each location
into the abstract tree it represents. If u is an atom,

decode(u, w) = u (atom)
for all states w. Thus each atom represents itself.

Manna and Waldinger 157

Furthermore, if x is a pair location,
decode (x, 20) =
decode (:Zeft(x, w), w) e decode (:right(x, w), w)

(pair)
for alI states w.

Specification constructs

Certain concepts are used repeatedly in the description of impera-
tive-LISP programs. We give a few of these here, without defining
them formally. We follow Mason [86] in our terminology.

e spine

The spine of a pair location e in state s, written
spine(l, s),

is the set of locations we can reach from 1 by following a trail of
right pointers (not left or store pointers).

e finiteness

We say that the spine of location ! is finite in state s, written
finite (.& s),

if we can get from location fJ to an atom by following a trail of
right pointers (not left or store pointers). A location is finite if
and only if its spine is a finite set.

0 list

We say that the location e represents a list in state s, written
list (e, s),

if either the spine of e is infinite or we can get from 4! to the atom
nil by following a trail of right pointers.

e accessibility

A location 4 is said to access a location m in state s, written
access(&, m, s),

if it is possible to get from e to m by following a trail of Zeft or
right pointers (not store pointers). We shall also say that m is
accessible from e.

e spine accessibility

We say that the spine of location e accesses the spine of lo-
cation m in state s, written

spine-access(& m, s),
if some element in the spine of e accesses some element in the spine
of m in state s.

e purity

We say that the location f! is pure in state s, written

pure@, 4,
if no element of the spine of e is accessible from the left component
of some element of the spine of f2 itself. Otherwise, the location f2
is said to be ingrown.

Abstract Properties of LISP Operators

While LISP functions are most concisely defined by giving their
effects on locations, their most useful properties often describe
their effects on the abstract lists and trees represented by these
locations. For example, we can establish the abstract property of
the function cons,

decode (:;cons(x, y, w)) = (abstract)
decode(x, w) e decode(y, w)

which relates cons to the abstract tree constructor e.

158 Automated Reasoning

Often, the properties we expect do not hold unless certain
stringent requirements are met. For example, the abstract property
of the function setright is

if pair(x) and
not access(: Zeft (x, w), x, w) and
not access(y, 2, w)

then decode (:;setright (x, y, w)) =
Zeft (decode(x, w)) e decode(y, w)

(abstract)
where the relation pair characterizes the pair locations. That is,
the function setright “normally” returns the result of a left oper-
ation followed by a tree construction. However, we require that
z must be inaccessible from :Zeft(x, w); otherwise, in altering the
right component of x, we inadvertently alter the abstract tree rep-
resented by the left component of x. Also, x must be inaccessible
from y; otherwise, in altering the right component of z, we inad-
vertently alter the abstract tree represented by y.

Many errors in imperative programming occur because people
assume that the abstract properties hold but forget the conditions
they require.

Specification of Programs

Each LISP program is applied to an initial input location es. The
resulting fluent is evaluated in an initial state SO, produces a new
state sf, and returns an output location e,. The specification for
a LISP program may thus be expressed as a sentence

epo, SO,lf, Sfl.
The program to be constructed computes a fluent function,

which does not apply to locations directly; it applies to an input
parameter a, an atom that (in normal evaluation mode) contains
the input location, that is, so:a = es. When the program is evalu-
ated, its actual argument, which is a fluent, is evaluated first. The
location it returns is stored in the parameter a. (This is easily
extended for programs which take more than one argument.)

Furthermore, the computed function does not yield a state or
location itself, but a fluent z. Evaluating z in the initial state so
produces the final state and returns the output location, that is,

ss:z = 4’1 and SO;% = sf.
To construct the program, therefore, we prove the theorem

(vQ>(vso)(~%)a[so:Q, so, so:z, so;z].
In other words, we prove the existence of a fluent z that, when
evaluated in the initial state, will produce a final state and yield
an output location meeting the specified conditions.

For example, suppose we want to specify a destructive list-
reversing program. In terms of its principle abstract property, we
may specify the desired program by the sentence

P[so,&,sf,ef]: decode(lf, sf) = rev(decode(&, so)).
In other words, the list represented by the location !Jf after evalu-
ation of the program is to be the reverse of the list represented by
4!0 before. For a moment, we forget about the conditions required
to make this possible.

The theorem we must prove is accordingly
(Va)(Vss)(3z)[decode(ss:t, ss;z) =

rev (decode (,~:a, so))].
The Deductive System

The system we employ to prove our theorems is an adaptation of
the deductive-tableau system we use to derive applicative programs
(Manna and Waldinger [80], [87a]). The adaptation to imperative

programs mimics our development of a deductive system for au-
tomatic planning (Manna and Waldinger [87b]). Because we shall
only informally present a segment of the program derivation in
this paper, we do not describe the system in detail. A complete
description appears in the report version of this paper.

The In-place Reverse Program

At the risk of spoiling the suspense, let us present the final program
we shall obtain from the derivation:

nrev(a) * nreQ(a, nil)

{

if null(a)
nrev2(a, b) S= then b

else nrev2(right (a), setright (a, b)).
This is an in-place reverse, used as an example by Mason [86].
The program nrev is defined in terms of a more general program
nrev2, which has the effect of reversing the list a and appending
the result to the list b. The consequence of applying the program
nrev2 is illustrated in the following figure:

after:

Note that the pointers in the spine of so:a have been reversed.

The principal condition in the specification for nrev2 is
decode(l?f, sf) = rev(decode(.f& SO)) 0 decode(mo, SO),

where f?s and mo are the two input locations, In other words, the
abstract list represented by the location ef after the evaluation is
to be the abstract list obtained by reversing the list represented
initially by & and appending the result to the list represented
initially by mo.

The program nrev2 we derive does not satisfy the above spec-
ification in all cases. We must require several input conditions
that ensure that our given lists are reasonably well behaved. We
impose

o the list conditions
Zist(&, se) and Zist(m0, SO),

that es and m,-, initially represent abstract lists.

e the finiteness condition

finite(e0, SO),

i.e., that the list .fs initially represents is finite;
otherwise, nrev2 would not terminate.

the purity condition

pure (lo, SO),
i.e., that the spine of !s is not initially acces-
sible from any of the left components of spine
elements; otherwise, in altering the pointers in
the spine, we would inadvertently be altering
the elements of the list represented by &.

the isolation condition
not spine-access(m0, !o, SO),

i.e., that the spine of &, is not initially accessible
from (the spine of) mo; otherwise, in altering the
spine of 10, we would inadvertently be altering
the list represented by me.

These are reasonable enough conditions, but to complete the deriva-
tion we must make them explicit. (Similarly, we must impose the
list condition for l?~, and the finiteness and purity conditions, on
the specification for nrev itself.)

The full specification for nrev2 is thus

if Zist(&, so) and Zist(mo, SO) and
finite(&, SO) and
pure(&,, SO) and
not spine-access(m0, !o, so)

then decode (lf , sf) =
rev (decode(!o, SO)) 0 decode(mo, SO),

and the theorem we must prove is

if Zist(so:a, SO) and Zist(so:b, so) and
finite(so:a, SO) and
pure(so:a, SO) and
not spine-access(so:b, so:a, SO)

then decode(so:;z) =
rev (decode(so:;a)) n decode(so:;b).

(Here we have dropped quantifiers by skolemization.)

We do not have time to present the full derivation of the pro-
gram nrev here, so let us focus our attention on the most interest-
ing point, in which the pointer reversal is introduced into nrev2.

Using the pair axiom for the decode function, properties of
abstract lists, and the input conditions, we may transform our
goal into

pair (so:a) and
decode(so:;z) = rev(decode(so:;right(a)))o

1 Zeh (decode(so:;a)) Q d&Je(so:;b) 1
1 - ., 1

We omit the details of how this was done.

At this point, we invoke the abstract property of setright,

if pair(x) and
not access(:Zeft(x, w), x, w) and
not access(y, 2, w)

then decode (:;setright(x, y, w)) =
left (decode (x, w)) e decode (y, w) I.

The boxed subsentence of the above property is equationally
unifiable with the boxed subsentence of our goal; a unifying sub-
stitution is 0 : {x t so:a, y t so:b, w c SO}.

To see that 8 is indeed an equational unifier, observe jhat

Manna and Waldinger 159

(Zeft(decode(so:;a)) 0 decode(so:;b))O
= Zeft(decode(so:a, sop)) e decode(so:b, so;b)

(by our abbreviation)
= Zeft(decode(so:a, so)) 8 decode(so:b, so)

(by the prod&ion atom axiom)
= (Zeft(decode(z, w)) 0 decode(y, w))O.

This reasoning is carried out by the equational unificution algo-
rithm (Fay 1791, see also Martelli and Rossi [SS]).

We can thus use the property to deduce that it suffices to
establish the goal

puir(sf~:u) and
not access (so:Zejl(u), .~:a, SO) and
not uccess(so:b, ~+,:a, SO) and
decode (SO :;z) = rev (decode (so:;right(u))) 0

decode (so:;setright (a, b)).
Formally this reasoning is carried out by the equality replacement
rule.

The second conjunct of the goal, that se:u is inaccessible from
so:Zeft(u), is a consequence of the purity input condition on se:u.
The third conjunct, that ss:u is inaccessible from ss:b, is a conse-
quence of the isolation input condition. These deductions can be
made easily within the system. Hence we are left with the goal

puir(so:u) and
decode (so :;z) = rev (decode (so:;right(u)))n

decode (so:;setright (a, b)).
Now we may use induction to introduce the recursive call into

the program nrev2. We omit how this is done. The complete
program derivation is described in the report version of this paper.

The program we have obtained is an in-place reverse, which
does not use any additional space. Of course, nothing in the deriva-
tion process ensures that the program we obtain is so economical.
Other, more wasteful programs meet the same specification.

If we want to guarantee that no additional storage is required,
we must include that property in the specification. More precisely,
we can define a function spuce(e, s) that yields the number of ad-
ditional locations (cons cells and gensyms) required to evaluate
fluent e in state s. We may then include the new condition

spuce(z, SO) = 0
in the theorem to be proved.

We could then derive the same in-place reverse program nrev
but we could not derive the more wasteful ones. Our derivation for
nrev would be longer, but would include a proof that the derived
program uses no additional space.

Discussion

The ultimate purpose of this work is the design of automatic sys-
tems capable of the synthesis of imperative programs. By perform-
ing detailed hand-derivations of sample imperative programs, we
achieve a step in this direction.

First of all, we ensure that the system is expressive enough
to specify and derive the program we have in mind. But it is not
enough that the derivation be merely possible. If the derivation
requires many gratuitous, unmotivated steps, it may be impossible
for a person or system to discover it unless the final program is
known in advance. Such a system may be useful to verify a given
program but hardly to synthesize a new one.

Of course, the fact that we can construct a well-motivated
proof by hand does not guarantee that an automatic theorem

160 Automated Reasoning

prover will discover it. We expect, however, that the proofs we
require are not far beyond the capabilities of existing systems.
Looking at many hand derivations assists us in the design of a
theorem prover capable of finding such derivations, work that is
still underway. Close examination of many proofs suggests what
rules of inference and strategies are appropriate to discover them.

Acknowledgments

The authors would like to thank Tom Henzinger and Ian Mason
for valuable discussions and careful reading of the manuscript, and
Evelyn Eldridge-Diaz for wing many versions.

References

Burstall [69] R. M. Burstall, Formal description of program
structure and semantics in first-order logic, Machine In-
telligence 5 (B. Meltzer and D. Michie, editors), Edin-
burgh University Press, Edinburgh, Scotland, 1969, pp.
79-98.

Fay [79] M. Fay, First-order unification in an equational the-
ory, Proceedings of the Fourth Workshop on Automated
Deduction, Austin, Texas, Feb. 1979, pp. 161-167.

Green [69] C. C. G reen, Application of theorem proving to
problem solving, Proceedings of the International Joint
Conference on Artificial Intelligence, Washington, D.C.,
May 1969, pp. 219-239.

Martelli and Rossi [86] A. Martelli and G. Rossi, An algorithm
for unification in equational theories, Proceedings of the
Third Symposium on Logic Programming, Salt Lake City,
Utah, Sept. 1986.

McCarthy [63] J. McCarthy, Situations, actions, and causal
laws, technical report, Stanford University, Stanford,
Calif., 1963. Reprinted in Semantic Information Pro-
cessing (Marvin Minsky, editor), MIT Press, Cambridge,
Mass., 1968, pp. 410-417.

Manna and Waldinger [80] 2. Manna and R. Waldinger, A
deductive approach to program synthesis, ACM Trans-
actions on Programming Languages and Systems, Vol. 2,
No. 1, Jan. 1980, pp. 90-121.

Manna and Waldinger [81] 2. Manna and R. Waldinger, Prob-
lematic features of programming languages: a situation-
al-logic approach, Acta Informuticu, Vol. 16, 1981, pp.
371-426.

Manna and Waldinger [87a] Z. Manna and R. Waldinger, The
origin of the binary-search paradigm, Proceedings of the
Ninth International Joint Conference on ArtificiuZ Intel-
ligence, Los Angeles, Calif., Aug. 1985, pp. 222-224. Also
in Science of Computer Programming (to appear).

Manna and Waldinger [87b] Z. Manna and R. Waldinger, How
to clear a block: a theory of plans, Journal of Automated
Reasoning (to appear).

Mason [86] I. A. Mason, Programs via transformation, Sympo-
sium on Logic in Computer Science, Cambridge, Mass.,
June 1986, pp. 105-117.

Waldinger and Lee [69] R. J. Waldinger and R. C. T. Lee,
PROW: A step toward automatic program writing, Pro-
ceedings of the International Joint Conference on Artifi-
cial Intelligence, Washington, D.C., May 1969, pp. 241-
252.

