
A Parallel Resolution Procedure

Based on Connection Graph

P. Daniel Cheng J. Y. Juang

Advanced Information Services Inc.
1512 Candletree Dr.

Peoria, IL 61614

Dept. of Electrical Engineering & Computer Science
Northwestern University

Evanston, IL 60201

ABSTRACT

In this paper, we present a new approach towards a
parallel resolution procedure which explores another
dimension of parallelism in addition to the AND/OR for-
mulation and special hardware constructs. The
approach organizes the input clauses of a problem
domain into a connection graph. The connection graph
is then partitioned and each partition is worked on by a
different processor of a multiprocessor system. These
processors execute the resolution procedure indepen-
dently on its partition, and exchange intermediate results
via clause migrations.

pair of literals which have the same predicate symbol
and are complementary in sign. If the unification
attempt between two literals succeeded, these two
unifiable literals are marked by a link and the resulting
MGU (the most general unifier) is used to label this link.
Given the clause set of Figure l.a, the corresponding
graph structure is shown in Figure 1.b.

Preliminary test results and qualitative assessments
of this procedure are also given.
1. Introduction

Resolution procedure has been the basis of
automatic theorem-provin
first introduction in 1965 ‘T

and logic inference since its
I]. However, its execution on

today’s computers is too slow to be effective, primarily
due to the long resolution cycle time and exponential
nature. Although exponential explosion remains una-
voidable, several parallel schemes have been proposed to
improve the speed performance of the resolution process.
Among them, the most current topic is the approach of
AND/OR parallelism. However, because of the
impedance of shared variables between AND branches
and the small number of OR branches found in most
existing programs [2-41, concurrency from AND/OR
parallelism approach is very limited in practice.

The graph representation offers several merits over
those represented in plain clause set. Among them, the
most notable one is the clause matching process in which
clauses unifiable with a key clause are to be identified in
each resolution step. Using the plain clause set represen-
tation, a set-wide search is needed every time a key
clause is presented. Although some efficient data
structures can be imposed (e.g., the FPA [6] lists) to res-
trict the search on relevant clauses only, unification still
has to be performed on each candidate clause and is sub-
ject to failure. Furthermore, the complexity each time is
proportional to the number of clauses at that state.

Cl. 1. -G(a,f)
Cl. 2. G(x,y) -Fky) -M(w)
Cl. 3. F(u,v) -P(u,w) -Q(w,V)
Cl. 4. F(u,v) -P(u,v)
cl. 5. M(c,v) -WV)
Cl. 6. H(u,v) -2(&z) -N&w)
Cl. 7. P(x,y) -L(x,y)
Cl. 8. Q(x.y) -Sky)

-K(w,v)

(a) The input clause set

In this paper, we propose a new approach towards a
parallel resolution procedure which in essence explores
another dimension of parallelism in addition to the
AND/OR formulation and special hardware constructs.
The approach organizes the input clauses of a problem
formulation into a connection graph
graph is then partitioned and loade d

51. The connection
into multiple pro-

Cl. lo)

cessors. These processors execute the resolution pro-
cedure independently on its partition, and exchange
intermediate results via clause migrations. The construc-
tion of connection graph is described in Section. 2. A
resolution procedure based on this graph is also briefed
in this section. In Section 3, we present a paraliel model
for executing the procedure on multiprocessor systems.
The parallel procedure is evaluated in Section 4, and
conclusions are drawn in Section 5. Cl. 10 Z(x,y) -B(x,y) Cl. 11 N(x,y) -J(x,r)

cm c-2

2. Resolution Based ou Connection Graph
2.1 Graph Representation

A graph structure of an input clause set is con-
structed as follows: each literal of clauses in the input
clause set is represented as a node in this graph, and the
nodes representing literals of a clause are grouped
together. Unification is then conducted to match every

(b) Graph representation of input clause set

Figure 1. An example problem.

cl. 9. K(x,y) -Wky)
cl. lo. i3x.y) -8ky)
cl. 1 I. N(x,y) -J(x,y)
cl. 12. L(d,e)
cl. 13. S(e,f)
cl. 14. B(a,b)
cl. 15. J(b,c)
cl. 16. W(c,d)

Cheng and juang 13

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Since the number of clauses grows rapidly during the
resolution process, this turns out very inefficient. This
problem, however, can be eliminated using graph
representation in which unifiable clauses are dynamically
maintained and the associated MGUs are immediately
available.

For each new clause generated by resolving upon
one of the link, clauses possibly unifiable with the resol-
vent can be easily identified through the links of its
parent clauses. No extensive matching is needed and
nore importantly, most of the new MGUs of the
resolvent’s links can be simply obtained through compo-
sition of substitutions.
2.2 Resolution on Connection Graph

After the connection graph is constructed, the reso-
lution procedure then repeatedly selects a link, resolves
upon this link, generates the associated resolvent, and
finally inserts this resolvent into the connection graph.
This process repeats until a null resolvent is generated or
no more resolution is possible. This process is outlined
in Figure 2.

A connection graph is solved if it contains the empty clause
To solve a connection graph which does not contain the empty clause

if there is a clause containing an unlinked literal
delete this clause together with its associated links

otherwise
select a link
delete the link and generate the resolvent
if the resolvent is a tautology

delete the resolvent
otherwise

add the resolvent together with its new links to the graph
solve the resulting connection graph

3. Parallel Resolution on Connection Graph
We take the algorithmic approach of the

connection-graph procedure described above in formulat-
ing a parallel resolution procedure. For the resulting
procedure, we impose no special architecture require-
ments; therefore, any speed advantages obtained from
hardware enhancements can also be incorporated.
3.1 The Parallel Approach

In conventional parallel resolution procedures,
clauses are stored at shared memory, and all the proces-
sors access the same store to obtain a clause pair (see
Figure 3.a). This approach incurs serious memory
conflicts, and results in a very long resolution cycle. To
reduce resolution cycle time, clauses can be partitioned
into smaller subsets. Each is stored in the local memory
of a processor, and resolved by the processor in parallel
with others see Figure 3.b). A clause set can be parti-

6 tioned in sue a way that each subset forms a conceptual
cluster. Therefore, each processor can concentrate on a
concept and keep busy all the time. Nevertheless, a sub-
set so obtained may not always contain sufficient clauses
for a successful proof. It has to request necessary clauses
from others from time to time as resolution proceeds.
The migration of clauses adjusts the partition dynami-
cally so that a proof can be found by one of the partici-
pating processors. Thus, clause migration is essentially a
robust scheme that explores conceptual clusters automat-
ically. Via clause migrations, a processor in the above
procedure conducts resolution virtually on the whole
clause set, though it is in fact working only on a small
subset of clauses. Thus, this parallel resolution pro-
cedure can be seen as a form of virtual resolutio?,
mechanism. This allows processors to work on the same

Figure 2. The sequential resolution procedure.

Each resolvent generated inherits the unifiable links
from its two parent clauses, and the new MGUs of these
links are obtained by the composition of the old MGU
and the MGU used in the resolution. Substitution com-
‘patibility is checked in the mean time and incompatible
links are not inherited. After the resolvent and its links
are generated, the link previously used to conduct the
resolution is removed from the two parent clauses.

If the resolvent is not an empty clause, it is checked
for deletion due to tautology or pure liter&. Because
tautologies do not positively contribute to the solution of
problems, they can be deleted from a set of clauses
without affecting the inconsistency. A literal in the resol-
vent becomes pure when it fails to inherit any link from
the parent clauses. A clause containing a pure literal can
not contribute to a refutation because the unlinked
literal can never be resolved upon [l]. Either parent
clauses can also become pure after the removal of the
resolution link. These clauses are subsequently deleted
from the connection graph.

Deletion of clauses containing pure literals is an
important feature of the connection graph proof pro-
cedure. In addition to the clause itself, all links con-
netted to its literals must also be deleted from the
graph. Deletion of such links, however, may cause
literals in other clauses to become unlinked. Thus dele-
tion of clauses can create a chain reaction in which a
succession of clauses is deleted from the graph. Deletion
of clauses simplifies the connection graph, reduces the
search space, and makes it easier to find a solution.

Figure 3.a A conventional parallel resolution procedure-
with clauses stored in shared memory

Figure 3.b Proposed parallel resolution procedure with
partitioned clause subsets

search path, which is impossible in the AND OR tree
search procedure. Furthermore, neither share d variable
nor synchronization is necessary.
3.2 Initial Graph Partition

In response to the problem decomposition in parallel
processing, the first task of this parallel procedure is the
decomposition of the initial connection graph. The gen-
era1 rule of problem decomposition in parallel processing

14 Al Architectures

is to allow as much parallelism and as less interprocessor
communication as possible. However, because of the
non-deterministic nature of the resolution process, fully
loading each processor with a sufficient workable subtask
is not necessarily most productive. Although the com-
munication overhead is our concern, least interprocessor
communication alone can’t be efficient either. In the
context of theorem-proving or logic inference, resolution
process is usually guided by a heuristic in order to get a
prompt proof. Problem decomposition should also follow
this discipline such that each subtask can work
effectively and cooperatively, not just fully utilize the
processor resources.

In this version of the parallel model, we provide a
preliminary scheme of problem decomposition through
which the initial connection graph is decomposed into
distinct partitions. First of all, we assign each link a
preference measure whose value is determined based on
the resolution strategy or heuristics in use. For example,
if unit preference strategy is used, the preference meas-
ure of a link can be directly set to the no. of residual
literals of that link. If set-of-support (SOS) strategy is
used, preference measures of links can be placed at three
different levels depending on whether both of the linked
clauses are supported, only one of them is supported, or
neither is supported. These levels can differ by an order
of magnitude with a secondary strategy, e.g., unit prefer-
ence, ordering the links within a level. Notice that these
preference measures can be used in selecting links during
the resolution process as well.

After the preference measures are established, an
inclusion process is invoked to group clauses starting
from some seed clauses. Unit clauses or clauses having
support can be used as the seeds and potentially, one
partition will grow from each of the seeds. The inclusion
process will run on each partition in turn and allocate
one clause to that partition at a time. (Multiple alloca-
tion may be desirable in some cases.) During the inclu-
sion process, clauses adjacent to that partition are
identified first. The clause with the best preference
measure and not allocated is then included to that parti-
tion. (For the case of multiple inclusion, clauses having
the same preference measure can all be allocated. Con-

2 tention of clauses, i.e., clauses having the best pre erence
measure but were allocated to other partitions, is also
marked and used later to determine the final partition
pattern.

.:::...
(‘1I e. . . “.. t. . 5 . .

Figure 4.

Process of initial partition.

The basic philosophy behind this inclusion process is
to avoid the situation that a clause is allocated to a par-
tition and has no links with any clause of that partition.
A clause under this situation is called an isolated clause
in this paper. Therefore, only clauses linked with that
partition are considered at each step of the inclusion pro-
cess. The inclusion process terminates when all the
input clauses are allocated. Executing this process on
the connection graph of previous example is illustrated in
Figure 4, where six unit clauses are used as the seeds.

Each partition thereafter formed can ideally be used
as a subtask for the parallel resolution. However, we
further analyze the overlapping of clauses between parti-
tions to determine the optimal partition pattern. A
basic criterion is that if two partitions have a moderate
degree of overlapping and each is small in terms of the
no. of clauses, we merge these two partitions into one as
illustrated by the merge of two partitions in Figure 4,
where finally four final partitions are formed, see Figure
5. Partitions with extensive overlap are merged to
reduced the communication overhead. Partitions with
small no. of clauses are merged in order to maintain a
feasible no. of clauses in each partition and to avoid pro-
cessors running out of clauses.
3.3 The Parallel Resolution Procedure

After the initial connection graph is decomposed,
each partition is loaded into a different PE of a mul-
tiprocessor system for execution. Each of these PEs will
perform the conventional connection graph proof pro-
cedure on its local partition, together with from time to
time interprocessor communications.

Figure 5. Initial partition on example clause set.

Cheng and Juang 15

Typically, an interprocessor communication need
arises when the linkage structures between partitions
change. For example, when a resolvent is generated, its
new external links are established through the interpro-
cessor communication. If a clause is deleted due to pure
literals or subsumption, all of its external links are also
broken through the interprocessor communication. For
the needs of these communication occasions, a protocol
set is designed to handled these works [7]. This protocol
is asynchronous type, and is running as a child process of
the resolution process in the current design. If a
hardware module can be built around it, the communica-
tion delay can be significantly reduced.

During the resolution process, each PE will repeat-
edly select a link (based on the preference measures),
generate the associated resolvent, and update the graph
structure. This process repeats until an empty clause is
generated. The news of empty clause is immediately
broadcast to all other PEs to stop the whole process.
This broadcasting is done through the communication
protocol also. If there exists no empty clause for the
problem, manual interruption is needed.
3.4 Clause Migration

In each cycle of the resolution process, a link is
selected from those belonged (completely or partially) to
the local partition. If the link selected is an external
link, this indicates that the local resolution has run to
the point where a remote clause can contribute to the
local resolution. In response to this, we provide the
clause migration mechanism through which clauses are
transferred between partitions. Through this mechan-
ism, we survive the problem of completeness resulted
from the decomposition of the input clauses. Further-
more, if the remote clause is an intermediate result of
other partition, we get the intended speedup by having
someone else doing that derivation.

The generation of isolated clauses is another occa-
sion for clause migration where all the internal links of a
clause are resolved away by local resolution. Since iso-
lated clauses are no longer useful in the local partition, it
is desirable to transfer them to other partitions. In
determining the destination of an isolated clause, we can
migrate the isolated clause to the partition which has the
largest no. of links with it, or to the partition which has
the maximal preference value on the link. The former
potentially minimizes the communication overhead
afterward while the latter could be more effective to the
whole resolution procedure.

We summarize our introduction of this parallel pro-
cedure in the following algorithm where highlighted steps
are intended for comparison with the sequential pro-
cedure of Figure 2.

The rate of clause migrations is considered an over-
head in this parallel procedure and it can be minimized
through a proper decomposition in the initial partition
stage. The procedure we devise for initial partition is
found satisfactory. Also worth mention here is the lock
procedure embedded in the clause migration mechanism.
That is, before a clause can be migrated, all clauses
linked with it are locked from being resolved. This
avoids losing track of the link structures while clauses
are migrating. It also prevents the situation that two
clauses are migrating to each other. Although better
schemes can be devised to get around this restriction, it
is this method used in current design.

Figure 6. The parallel resolution procedure.

4. Performance Evaluation
A preliminary performance assessment of this paral-

lel procedure is conducted based on a series of program
verification problems suggested by McCharen et al [g].
The execution of the parallel procedure is emulated by a
simplified prototype which creates one logic process to
simulate a physical processor. In this prototype, clause
migration takes place only when a clause is isolated in a
partition. The solution time, in terms of resolution step,
is used as the primary measurement. Each problem is
solved several times by slightly varying the number of
partitions in order to observe the performance fluctua-
tion under different partition numbers. The solutions
with single partition are used to resemble what would
have been obtained from the sequential procedure. The
test results are summarized in Table 1.
because of the restriction of migration upon isolation
only in current implementation, a clause needs to
exhaust all of its internal links to becomes isolated and
available to other partitions. This may generate a vast
amount of clauses in the local PE and delay its timely
effect on other PEs.

5. Concluding Remarks
We have described a new approach to the parallel-

ism of resolution procedure for theorem-proving and
logic inference. The approach explores another dimen-
sion of parallelism in addition to the pipelined architec-
ture constructs and the AND/OR parallelism. The con-
trol over the individual clause level also provides us the
flexibility in incorporating existing resolution strategies
developed from the theoretic study of theorem-proving.
The formulation of this parallel model does not either
impose any special hardware requirement, and can thus
be easily realized on any multi-computer system or local
computer network. Observing that this parallelism is
only limited by the number of PEs and the communica-
tion support, an ultimate speedup can be achieved when
the resolution process is guided by an elaborate strategy.

16 Al Architectures

Secondly, we want to address the innovation idea of
clause migration. This clause migration capability sup-
ports the effectiveness of resolution strategies, and pro-
vides an illusion of virtual resolution even though the
clauses are distributed over different sites. That is, as
soon as a clause becomes material to the resolution pro-
cess of one partition, this clause can be made available
to that partition immediately without any concern of its
residency.

Finally, from this investigation we also identified
another advantage of the connection graph representa-
tion which we do benefit in the formulation of this paral-
lel procedure. The link structure of the connection
graph facilitates our work of clause partition by provid-
ing us information about clause interrelation. With
these clause interrelations established beforehand, every
effort can be made to group relevant clauses into the
same partition. Each link itself is also an indicator of
how heavy a clause is relative to other clause. Thus,
communication overhead can be reduced by simply
minimizing the number of links between partitions.
With only these links maintained in each partition,
conversations between partitions are easily conducted
along these links without knowing each other’s whole
clause set whatsoever.

Also implied in our presentations are several
enhancements to the parallel procedure, like program-
ming each PE to use a different resolution strategy,
relaxation of the lock restriction, dynamic partition split
on heavy-loaded PEs, and finally the complete
realization of this parallel procedure on a real multipro-
cessor system. Those are the major topics of our further
research on this parallel approach.

REFERENCES
J. A. Robinson, “A Machine Oriented Logic Based
on the Resolution Principle,” JACM, vol. 12, pp.
23-41, Jan. 1965.
S. J. Stolfo and D. Miranker, “DADO: A Parallel
Processor for Expert Systems,” in Proc. 1984 Int’l
Conf. Parallel Processing, pp. 74-82, Aug. 1984.
J. S. Conery and D. F. Kibler, “AND Parallelism
and Nondeterminism in Logic Programs,” New
Generation Computing, vol. 3, pp. 43-70, 1985.
K. Murakami, T. Kakuta, and R. Onai, “Archi-
tecture and Hardware System: Parallel Inference
Machine,” in Proc. Int’l Conf. Fifth-Generation
Computer Systems, pp. 18-36, Tokyo, 1984.
R. Kowalski, Logic jor Problem Solving, North-
Holland, New York, 1979.
E. Lusk and R. Overbeek, “Data structures and
control architecture for the implementation of
theorem-proving programs,” in Proc. 5th Cons.
Automated Deduction, pp. 232-249, 1980.
P. Daniel Cheng, A Parallel Theorem Prover
Based on Connection Graph, Master’s Thesis,
Nothwestern University, Evanston, Illinois, Dec.
1986.
J. D. McCharen, R. A. Overbeek, and L. A. Wos,
“Problems and Experiments for and with
Automated Theorem-Proving Programs,” IEEE
Trans. Comput., vol. C-25, pp. 773-781, Aug.
1976.

Initial
Resolution Steps Taken

Best Normalized
I

21 191 I 96 I 83 I 67 I 49 I 75 I 3.9a I 0.98 I

Table 1. Results of testing the proposed model on a set of program-verification
problems in non-Horn clauses.

<Note> The speedup of the proposed model over AURA is adjusted by a factor (a >
1) to account the following two facts: (1) Hyper-resolution is used in AURA,
which may resolve more than one pair of literals in each step; (2) Resolution
cycle of proposed method is shorter than that of AURA since no string
matching is necessary.

Cheng and juang 17

