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ABSTRACT 

In this paper, we present a new approach towards a 
parallel resolution procedure which explores another 
dimension of parallelism in addition to the AND/OR for- 
mulation and special hardware constructs. The 
approach organizes the input clauses of a problem 
domain into a connection graph. The connection graph 
is then partitioned and each partition is worked on by a 
different processor of a multiprocessor system. These 
processors execute the resolution procedure indepen- 
dently on its partition, and exchange intermediate results 
via clause migrations. 

pair of literals which have the same predicate symbol 
and are complementary in sign. If the unification 
attempt between two literals succeeded, these two 
unifiable literals are marked by a link and the resulting 
MGU (the most general unifier) is used to label this link. 
Given the clause set of Figure l.a, the corresponding 
graph structure is shown in Figure 1.b. 

Preliminary test results and qualitative assessments 
of this procedure are also given. 
1. Introduction 

Resolution procedure has been the basis of 
automatic theorem-provin 
first introduction in 1965 ‘T 

and logic inference since its 
I]. However, its execution on 

today’s computers is too slow to be effective, primarily 
due to the long resolution cycle time and exponential 
nature. Although exponential explosion remains una- 
voidable, several parallel schemes have been proposed to 
improve the speed performance of the resolution process. 
Among them, the most current topic is the approach of 
AND/OR parallelism. However, because of the 
impedance of shared variables between AND branches 
and the small number of OR branches found in most 
existing programs [2-41, concurrency from AND/OR 
parallelism approach is very limited in practice. 

The graph representation offers several merits over 
those represented in plain clause set. Among them, the 
most notable one is the clause matching process in which 
clauses unifiable with a key clause are to be identified in 
each resolution step. Using the plain clause set represen- 
tation, a set-wide search is needed every time a key 
clause is presented. Although some efficient data 
structures can be imposed (e.g., the FPA [6] lists) to res- 
trict the search on relevant clauses only, unification still 
has to be performed on each candidate clause and is sub- 
ject to failure. Furthermore, the complexity each time is 
proportional to the number of clauses at that state. 

Cl. 1. -G(a,f) 
Cl. 2. G(x,y) -Fky) -M(w) 
Cl. 3. F(u,v) -P(u,w) -Q(w,V) 
Cl. 4. F(u,v) -P(u,v) 
cl. 5. M(c,v) -WV) 
Cl. 6. H(u,v) -2(&z) -N&w) 
Cl. 7. P(x,y) -L(x,y) 
Cl. 8. Q(x.y) -Sky) 

-K(w,v) 

(a) The input clause set 

In this paper, we propose a new approach towards a 
parallel resolution procedure which in essence explores 
another dimension of parallelism in addition to the 
AND/OR formulation and special hardware constructs. 
The approach organizes the input clauses of a problem 
formulation into a connection graph 
graph is then partitioned and loade d 

51. The connection 
into multiple pro- 

Cl. lo) 

cessors. These processors execute the resolution pro- 
cedure independently on its partition, and exchange 
intermediate results via clause migrations. The construc- 
tion of connection graph is described in Section. 2. A 
resolution procedure based on this graph is also briefed 
in this section. In Section 3, we present a paraliel model 
for executing the procedure on multiprocessor systems. 
The parallel procedure is evaluated in Section 4, and 
conclusions are drawn in Section 5. Cl. 10 Z(x,y) -B(x,y) Cl. 11 N(x,y) -J(x,r) 

cm c-2 

2. Resolution Based ou Connection Graph 
2.1 Graph Representation 

A graph structure of an input clause set is con- 
structed as follows: each literal of clauses in the input 
clause set is represented as a node in this graph, and the 
nodes representing literals of a clause are grouped 
together. Unification is then conducted to match every 

(b) Graph representation of input clause set 

Figure 1. An example problem. 

cl. 9. K(x,y) -Wky) 
cl. lo. i3x.y) -8ky) 
cl. 1 I. N(x,y) -J(x,y) 
cl. 12. L(d,e) 
cl. 13. S(e,f) 
cl. 14. B(a,b) 
cl. 15. J(b,c) 
cl. 16. W(c,d) 
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Since the number of clauses grows rapidly during the 
resolution process, this turns out very inefficient. This 
problem, however, can be eliminated using graph 
representation in which unifiable clauses are dynamically 
maintained and the associated MGUs are immediately 
available. 

For each new clause generated by resolving upon 
one of the link, clauses possibly unifiable with the resol- 
vent can be easily identified through the links of its 
parent clauses. No extensive matching is needed and 
nore importantly, most of the new MGUs of the 
resolvent’s links can be simply obtained through compo- 
sition of substitutions. 
2.2 Resolution on Connection Graph 

After the connection graph is constructed, the reso- 
lution procedure then repeatedly selects a link, resolves 
upon this link, generates the associated resolvent, and 
finally inserts this resolvent into the connection graph. 
This process repeats until a null resolvent is generated or 
no more resolution is possible. This process is outlined 
in Figure 2. 

A connection graph is solved if it contains the empty clause 
To solve a connection graph which does not contain the empty clause 

if there is a clause containing an unlinked literal 
delete this clause together with its associated links 

otherwise 
select a link 
delete the link and generate the resolvent 
if the resolvent is a tautology 

delete the resolvent 
otherwise 

add the resolvent together with its new links to the graph 
solve the resulting connection graph 

3. Parallel Resolution on Connection Graph 
We take the algorithmic approach of the 

connection-graph procedure described above in formulat- 
ing a parallel resolution procedure. For the resulting 
procedure, we impose no special architecture require- 
ments; therefore, any speed advantages obtained from 
hardware enhancements can also be incorporated. 
3.1 The Parallel Approach 

In conventional parallel resolution procedures, 
clauses are stored at shared memory, and all the proces- 
sors access the same store to obtain a clause pair (see 
Figure 3.a). This approach incurs serious memory 
conflicts, and results in a very long resolution cycle. To 
reduce resolution cycle time, clauses can be partitioned 
into smaller subsets. Each is stored in the local memory 
of a processor, and resolved by the processor in parallel 
with others see Figure 3.b). A clause set can be parti- 

6 tioned in sue a way that each subset forms a conceptual 
cluster. Therefore, each processor can concentrate on a 
concept and keep busy all the time. Nevertheless, a sub- 
set so obtained may not always contain sufficient clauses 
for a successful proof. It has to request necessary clauses 
from others from time to time as resolution proceeds. 
The migration of clauses adjusts the partition dynami- 
cally so that a proof can be found by one of the partici- 
pating processors. Thus, clause migration is essentially a 
robust scheme that explores conceptual clusters automat- 
ically. Via clause migrations, a processor in the above 
procedure conducts resolution virtually on the whole 
clause set, though it is in fact working only on a small 
subset of clauses. Thus, this parallel resolution pro- 
cedure can be seen as a form of virtual resolutio?, 
mechanism. This allows processors to work on the same 

Figure 2. The sequential resolution procedure. 

Each resolvent generated inherits the unifiable links 
from its two parent clauses, and the new MGUs of these 
links are obtained by the composition of the old MGU 
and the MGU used in the resolution. Substitution com- 
‘patibility is checked in the mean time and incompatible 
links are not inherited. After the resolvent and its links 
are generated, the link previously used to conduct the 
resolution is removed from the two parent clauses. 

If the resolvent is not an empty clause, it is checked 
for deletion due to tautology or pure liter&. Because 
tautologies do not positively contribute to the solution of 
problems, they can be deleted from a set of clauses 
without affecting the inconsistency. A literal in the resol- 
vent becomes pure when it fails to inherit any link from 
the parent clauses. A clause containing a pure literal can 
not contribute to a refutation because the unlinked 
literal can never be resolved upon [l]. Either parent 
clauses can also become pure after the removal of the 
resolution link. These clauses are subsequently deleted 
from the connection graph. 

Deletion of clauses containing pure literals is an 
important feature of the connection graph proof pro- 
cedure. In addition to the clause itself, all links con- 
netted to its literals must also be deleted from the 
graph. Deletion of such links, however, may cause 
literals in other clauses to become unlinked. Thus dele- 
tion of clauses can create a chain reaction in which a 
succession of clauses is deleted from the graph. Deletion 
of clauses simplifies the connection graph, reduces the 
search space, and makes it easier to find a solution. 

Figure 3.a A conventional parallel resolution procedure- 
with clauses stored in shared memory 

Figure 3.b Proposed parallel resolution procedure with 
partitioned clause subsets 

search path, which is impossible in the AND OR tree 
search procedure. Furthermore, neither share d variable 
nor synchronization is necessary. 
3.2 Initial Graph Partition 

In response to the problem decomposition in parallel 
processing, the first task of this parallel procedure is the 
decomposition of the initial connection graph. The gen- 
era1 rule of problem decomposition in parallel processing 
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is to allow as much parallelism and as less interprocessor 
communication as possible. However, because of the 
non-deterministic nature of the resolution process, fully 
loading each processor with a sufficient workable subtask 
is not necessarily most productive. Although the com- 
munication overhead is our concern, least interprocessor 
communication alone can’t be efficient either. In the 
context of theorem-proving or logic inference, resolution 
process is usually guided by a heuristic in order to get a 
prompt proof. Problem decomposition should also follow 
this discipline such that each subtask can work 
effectively and cooperatively, not just fully utilize the 
processor resources. 

In this version of the parallel model, we provide a 
preliminary scheme of problem decomposition through 
which the initial connection graph is decomposed into 
distinct partitions. First of all, we assign each link a 
preference measure whose value is determined based on 
the resolution strategy or heuristics in use. For example, 
if unit preference strategy is used, the preference meas- 
ure of a link can be directly set to the no. of residual 
literals of that link. If set-of-support (SOS) strategy is 
used, preference measures of links can be placed at three 
different levels depending on whether both of the linked 
clauses are supported, only one of them is supported, or 
neither is supported. These levels can differ by an order 
of magnitude with a secondary strategy, e.g., unit prefer- 
ence, ordering the links within a level. Notice that these 
preference measures can be used in selecting links during 
the resolution process as well. 

After the preference measures are established, an 
inclusion process is invoked to group clauses starting 
from some seed clauses. Unit clauses or clauses having 
support can be used as the seeds and potentially, one 
partition will grow from each of the seeds. The inclusion 
process will run on each partition in turn and allocate 
one clause to that partition at a time. (Multiple alloca- 
tion may be desirable in some cases.) During the inclu- 
sion process, clauses adjacent to that partition are 
identified first. The clause with the best preference 
measure and not allocated is then included to that parti- 
tion. (For the case of multiple inclusion, clauses having 
the same preference measure can all be allocated. Con- 

2 tention of clauses, i.e., clauses having the best pre erence 
measure but were allocated to other partitions, is also 
marked and used later to determine the final partition 
pattern. 

. . . . . . . . . ...:::... . . . . . . . . . 
(‘1 . . ..I e. . . “.. t. . 5 . . 

Figure 4. 

Process of initial partition. 

The basic philosophy behind this inclusion process is 
to avoid the situation that a clause is allocated to a par- 
tition and has no links with any clause of that partition. 
A clause under this situation is called an isolated clause 
in this paper. Therefore, only clauses linked with that 
partition are considered at each step of the inclusion pro- 
cess. The inclusion process terminates when all the 
input clauses are allocated. Executing this process on 
the connection graph of previous example is illustrated in 
Figure 4, where six unit clauses are used as the seeds. 

Each partition thereafter formed can ideally be used 
as a subtask for the parallel resolution. However, we 
further analyze the overlapping of clauses between parti- 
tions to determine the optimal partition pattern. A 
basic criterion is that if two partitions have a moderate 
degree of overlapping and each is small in terms of the 
no. of clauses, we merge these two partitions into one as 
illustrated by the merge of two partitions in Figure 4, 
where finally four final partitions are formed, see Figure 
5. Partitions with extensive overlap are merged to 
reduced the communication overhead. Partitions with 
small no. of clauses are merged in order to maintain a 
feasible no. of clauses in each partition and to avoid pro- 
cessors running out of clauses. 
3.3 The Parallel Resolution Procedure 

After the initial connection graph is decomposed, 
each partition is loaded into a different PE of a mul- 
tiprocessor system for execution. Each of these PEs will 
perform the conventional connection graph proof pro- 
cedure on its local partition, together with from time to 
time interprocessor communications. 

Figure 5. Initial partition on example clause set. 
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Typically, an interprocessor communication need 
arises when the linkage structures between partitions 
change. For example, when a resolvent is generated, its 
new external links are established through the interpro- 
cessor communication. If a clause is deleted due to pure 
literals or subsumption, all of its external links are also 
broken through the interprocessor communication. For 
the needs of these communication occasions, a protocol 
set is designed to handled these works [7]. This protocol 
is asynchronous type, and is running as a child process of 
the resolution process in the current design. If a 
hardware module can be built around it, the communica- 
tion delay can be significantly reduced. 

During the resolution process, each PE will repeat- 
edly select a link (based on the preference measures), 
generate the associated resolvent, and update the graph 
structure. This process repeats until an empty clause is 
generated. The news of empty clause is immediately 
broadcast to all other PEs to stop the whole process. 
This broadcasting is done through the communication 
protocol also. If there exists no empty clause for the 
problem, manual interruption is needed. 
3.4 Clause Migration 

In each cycle of the resolution process, a link is 
selected from those belonged (completely or partially) to 
the local partition. If the link selected is an external 
link, this indicates that the local resolution has run to 
the point where a remote clause can contribute to the 
local resolution. In response to this, we provide the 
clause migration mechanism through which clauses are 
transferred between partitions. Through this mechan- 
ism, we survive the problem of completeness resulted 
from the decomposition of the input clauses. Further- 
more, if the remote clause is an intermediate result of 
other partition, we get the intended speedup by having 
someone else doing that derivation. 

The generation of isolated clauses is another occa- 
sion for clause migration where all the internal links of a 
clause are resolved away by local resolution. Since iso- 
lated clauses are no longer useful in the local partition, it 
is desirable to transfer them to other partitions. In 
determining the destination of an isolated clause, we can 
migrate the isolated clause to the partition which has the 
largest no. of links with it, or to the partition which has 
the maximal preference value on the link. The former 
potentially minimizes the communication overhead 
afterward while the latter could be more effective to the 
whole resolution procedure. 

We summarize our introduction of this parallel pro- 
cedure in the following algorithm where highlighted steps 
are intended for comparison with the sequential pro- 
cedure of Figure 2. 

The rate of clause migrations is considered an over- 
head in this parallel procedure and it can be minimized 
through a proper decomposition in the initial partition 
stage. The procedure we devise for initial partition is 
found satisfactory. Also worth mention here is the lock 
procedure embedded in the clause migration mechanism. 
That is, before a clause can be migrated, all clauses 
linked with it are locked from being resolved. This 
avoids losing track of the link structures while clauses 
are migrating. It also prevents the situation that two 
clauses are migrating to each other. Although better 
schemes can be devised to get around this restriction, it 
is this method used in current design. 

Figure 6. The parallel resolution procedure. 

4. Performance Evaluation 
A preliminary performance assessment of this paral- 

lel procedure is conducted based on a series of program 
verification problems suggested by McCharen et al [g]. 
The execution of the parallel procedure is emulated by a 
simplified prototype which creates one logic process to 
simulate a physical processor. In this prototype, clause 
migration takes place only when a clause is isolated in a 
partition. The solution time, in terms of resolution step, 
is used as the primary measurement. Each problem is 
solved several times by slightly varying the number of 
partitions in order to observe the performance fluctua- 
tion under different partition numbers. The solutions 
with single partition are used to resemble what would 
have been obtained from the sequential procedure. The 
test results are summarized in Table 1. 
because of the restriction of migration upon isolation 
only in current implementation, a clause needs to 
exhaust all of its internal links to becomes isolated and 
available to other partitions. This may generate a vast 
amount of clauses in the local PE and delay its timely 
effect on other PEs. 

5. Concluding Remarks 
We have described a new approach to the parallel- 

ism of resolution procedure for theorem-proving and 
logic inference. The approach explores another dimen- 
sion of parallelism in addition to the pipelined architec- 
ture constructs and the AND/OR parallelism. The con- 
trol over the individual clause level also provides us the 
flexibility in incorporating existing resolution strategies 
developed from the theoretic study of theorem-proving. 
The formulation of this parallel model does not either 
impose any special hardware requirement, and can thus 
be easily realized on any multi-computer system or local 
computer network. Observing that this parallelism is 
only limited by the number of PEs and the communica- 
tion support, an ultimate speedup can be achieved when 
the resolution process is guided by an elaborate strategy. 
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Secondly, we want to address the innovation idea of 
clause migration. This clause migration capability sup- 
ports the effectiveness of resolution strategies, and pro- 
vides an illusion of virtual resolution even though the 
clauses are distributed over different sites. That is, as 
soon as a clause becomes material to the resolution pro- 
cess of one partition, this clause can be made available 
to that partition immediately without any concern of its 
residency. 

Finally, from this investigation we also identified 
another advantage of the connection graph representa- 
tion which we do benefit in the formulation of this paral- 
lel procedure. The link structure of the connection 
graph facilitates our work of clause partition by provid- 
ing us information about clause interrelation. With 
these clause interrelations established beforehand, every 
effort can be made to group relevant clauses into the 
same partition. Each link itself is also an indicator of 
how heavy a clause is relative to other clause. Thus, 
communication overhead can be reduced by simply 
minimizing the number of links between partitions. 
With only these links maintained in each partition, 
conversations between partitions are easily conducted 
along these links without knowing each other’s whole 
clause set whatsoever. 

Also implied in our presentations are several 
enhancements to the parallel procedure, like program- 
ming each PE to use a different resolution strategy, 
relaxation of the lock restriction, dynamic partition split 
on heavy-loaded PEs, and finally the complete 
realization of this parallel procedure on a real multipro- 
cessor system. Those are the major topics of our further 
research on this parallel approach. 
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Initial 
Resolution Steps Taken 

Best Normalized 
I 

21 191 I 96 I 83 I 67 I 49 I 75 I 3.9a I 0.98 I 

Table 1. Results of testing the proposed model on a set of program-verification 
problems in non-Horn clauses. 

<Note> The speedup of the proposed model over AURA is adjusted by a factor (a > 
1) to account the following two facts: (1) Hyper-resolution is used in AURA, 
which may resolve more than one pair of literals in each step; (2) Resolution 
cycle of proposed method is shorter than that of AURA since no string 
matching is necessary. 
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