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ABSTRACT 

This paper is about explanation-based learn- 
ing for heuristic problem solvers which "build" 
solutions using schemata (frames like scripts) as 
both "bricks" and "mortar". The heart of the paper 
is a description of a generalization method which 
is designed to extract as much information as pos- 
sible from examples of successful problem solving 
behavior. A' related generalizer, (less powerful 
but more efficient), has been implemented as part 
of an experimental apprentice.* 

I INTRODUCTION 

Many knowledge-based AI systems have used 
schemata (knowledge packets such as frames or 
scripts) as the basis of computational models of 
understanding [I], planning [2] or other problem 
solving [3], but very few of these systems have 
been capable of generating their own schemata. As 
a result, most schema-based systems have been 
unable to automatically profit from their experi- 
ences, so that the main way of improving their 
performance has been by laboriously hand-coding 
new schemata. 

At the University of Illinois, a small group 
led by Prof. Gerald DeJong has been exploring and 
automating a solution to this knowledge- 
acquisition bottleneck: a particular brand of 
explanation-based learning called "explanatory 
schema acquisition (ESA)." [4,5] 

This paper describes the explanation and gen- 
eralization methods underlying explanatory schema 
acquisition in the context of our first complete 
implementation of an experimental apprentice. The 
apprentice, (named MA), contains a heuristic 
search schema-based problem solver specializing in 
interactive human-oriented theorem proving. Like 
any other apprentice, MA starts life with very 
limited problem solving ability. Initially, MA can 
only make tiny contributions to most problem solv- 
ing efforts; its master must supply the insights 

* This report describes work done in the AI 
group of the Coordinated Science Laboratory at the 
University of Illinois at Urbana-Champaign. The 
work was supported by the National Science Founda- 
tion under grant NSF IST 81-20254. 

which lead to successful proofs. At first, MA 
"merely" observes the master's behavior, but MA 
recognizes when this behavior leads to success. 
Then by generalization based on analysis of the 
reasons for success MA learns new schemata and 
heuristics for their use. 

II PROBLEM SOLVING WITH SCHEMATA 

Schema-based problem solvers are goal 
directed systems which aim to construct schemata 
satisf'ying given constraints. Of course, the 
details of schemata will vary from one domain to 
another but in general schemata used in 
explanation-based schema acquisition systems are 
comprised of parameters (variables), constraints 
on parameters (which may function as "slots"), and 
deDendencv relations between the constraints. 

A schema-based problem solver makes progress 
toward its goal by instantiating general schemata 
called prototypes. Instantiation is accomplished 
by invoking a prototype (copying it with new, 
unique names for parameters) and binding parame- 
ters. Parameters may only be bound to or iuenti- 
fied with objects subject to the constraints. Two 
kinds of prototype are used to build solutions: 
nrimitive schemata and schematic forms. A 
schematic form is a schema which is used to com- 
bine existing schemata into a new composite 
schema; it has parameters which are constrained to 
be filled by other schemata. 

MA has a primitive proof prototype which 
plays the role of the assumption axiom schema of 
Manna's Gentzen style natural deduction system 
[61. Given a set of hypotheses, the assumption 
axicxn can be used to infer a desired conclusion 
when it is a member of the given set. The parame- 
ters associated with AssumptionAxiom schemata are 
Self, A and Gamma. A is constrained to be a WFF 
(well-formed formula) and Gamma must be a SET-OF- 
WFFS. The Self parameter has the constraint 
(PROOF Self OF A FROM (Union Gamma {A)) which 
depends on the other constraints. The constraints 
associated with an instance of a prototype are 
represented as assertions in a database and the 
dependencies between the constraints are 
represented as data-dependencies as described and 
illustrated in [7]. The dependency graph associ- 
ated with an instance of assumption axiom 
represents the fact that the instance (denoted by 
ftSelflt) is a complete proof (of A from the set of 
WFFs derivea by adding A to Gamma) if and only if 
A is a WFF and Gamma is a set of WFFs. 
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(PROOF AnInstanceOfAssumptionAx. OF A ON Gamma,A) 

A 
(WFF A)- (SET-OF-WFFS Gamma) 

Fig. 1: JLSS~DtiOnAXiOm Constraints & DeDendencies 

Not all MA's schemata are primitive like 
assumption axiom. Complex schemata can be con- 
structed using "inferential forms." For example, 
MA has schematic forms (corresponding to the "Or 
Introductionn rules of [6]) which facilitate the 
construction of proofs of disjunctions. If we have 
a proof of A we can plug it into an instance of 
OrIntroductionA to get a proof' of A OR B for any 
WFF B. A similar OrIntroductionB schema can be 
used to construct a proof of a disjunction out of 
a proof of the second disjunct. 

(PROOF AnInstanceOfOrIntro. OF (OR A B) ON Gamma) 

(PROOF Pf OF A ON (WFF B) 

(SET-OF-WFFS Gamma) (WFF A) 

Fig. 2: OrIntroduction Constraints & DeDendencies 

MA also has an inferential form corresponding 
to the Elimination of Assumption rule. If we have 
two proofs of A, one based on some assumptions 
plus B and another on the same assumptions plus 
NOT B then we can plug the proofs into this form 
to get a proof of A that doesn't aepend on B. 

Of' course, it's not enough simply to have a 
collection of passive schemata: one must also know 
how to use them! MA is a heuristic schema based 
problem-solver because heuristics control the 
instantiation of schemata. The heuristics have 
conditions which only allow invocation of a schema 
when it is sure to help achieve the goal. For 

(PROOF AnInstOfElimOfAssumption OF A ON Gamma) 

(PROOF Pfl 0F A ON Gamma,B) 
\ 

(PROOF Pf2 OF A ON Gamma,(NOT B)) 

Fig. 3: EliminationOfAssumDtion Constraints Figure 4: A proof that P OR (NOT P) is a tautology 

example, MA has a heuristic which causes it to 
instantiate AssumptionAxiom to achieve goals of 
the form (PROOF GoalPF OF A FROM (Union Gamma 
{A))) because AssumptionAxiom is sure to achieve 
such goals. OrIntroduction schemata are invoked 
for goals of the form (PROOF GoalPF OF (OR A B) 
FROM Gamma) because they reduce such goals to 
simpler goals of proving one or the other dis- 
junct. On the other hand, just because a schema 
can be applied in a given situation is no reason 
that it should be, so MA does not instantiate 
EliminationOfAssumption just because it sees a 
goal of the form (PROOF GoalPF OF A FROM Gamma). 

Narrowing the conditions under which schemata 
are invoked has the advantage of minimizing 
search, but we pay a price in generality (in this 
case our theorem prover is rendered incomplete). 
In other words, when the problem solver can solve 
a problem it will do so efficiently but there will 
be soluble problems which it can not solve. Ini- 
tially MA, (like many people), will not know what 
to do if you ask it to prove P OR NOT P is a tau- 
tology (i.e. to construct a schema named GoalPF 
under the constraint that (PROOF GoalPF OF (OR P 
(NOT P)) FROM Empty-Set)). None of MA's heuris- 
tics are applicable to this goal, so the appren- 
tice program gives up and waits for its master to 
give it a hint. 

To set the stage for the next section, assume 
that the user sees how to build the desired proof. 
Assuming the user applies EliminationOfAssumption 
toward achieving the goal, MA will fill in the 
needed OrIntroduction(A and B) and AssumptionAx- 
ioms hooking them up as illustrated in figure 4. 
More importantly, the achievement of the goals 
involved will trigger the generalization algo- 
rithm, which will make sure MA is not at a loss 
when confronted with similar problems and subprob- 
lems in the future! 

I 
Empty Se+ 
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III GENERALIZATION 

The goal of ESA learning is to improve the 
performance of schema-based problem solvers. One 
way of maximizing this improvement is by extract- 
ing as much knowledge as possible from given exam- 
ples of success. When knowledge is encoded in 
schemata and heuristics representing associations 
between different goals and methods Of achieving 
them, ESA can enable the problem solver to achieve 
as many new goals as possible by maximizing 

OrIntroduction(A and B), and AssumptionAxiom could 
be used to prove conclusions other than P OR NOT P 
from sets of hypotheses other than the Empty-Set. 
Most people realize this composition could be used 
to prove any conclusion of the form A OR NOT A (A 
need not be the particular WFF: P) from an arbi- 
trary (possibly non-empty) set of hypotheses. 

1) the number and 
2) peneralitv of heuristics and schemata 

extracted from each example. 

Extracting many schemata can enable the prob- 
lem solver to achieve subgoals which were achieved 
during the construction of complex examples. In 
the P OR NOT P example, we should not only have a 
heuristically invoked schema generalized from the 
proof of figure 4, but we should also extract gen- 
eral schemata from subproofs such as the proof of 
P OR NOT P from P. In addition it is sometimes 
desireable to extract new schematic forms from 
example schemata. This amounts to learning new 
ways of combining schemata to achieve goals. This 
makes it possible for Fti to learn new "inferential 
f'orms" (ways of forming new proofs from existing 
proofs) like the derived rules of inference in 
C61 l Please see the expanded version of this 
report for a discussion of these issues [8]. 

ESA uses explanations of the reasons for suc- 
cess as the basis for generalization and for 
determining the condition under which the general- 
ized schemata should be invoked. The explanations 
are embodied in dependency networks generated dur- 
ing the process of solving a problem. Figure 5 
shows part of the dependency network underlying 
the P OR NOT P example. 

An ESA algorithm computes the condition which 
determines when a novel schema should be invoked 
by examining this sort of explanation and collect- 
ing facts crucial to the success of the schema. 
The following taxonomy is used to seperate the 
important "wheat" from the irrelevant "chaff." 

A TAXONOMY OF CONSTRAINTS 

Essential constraints form integral parts of 
explanations of success and must be incorporated 
into the results of generalization. There are two 
types of essential constraint: 

This section focuses on maximizing the qual- 
ity (generality) rather than the quantity of new 
heuristics and schemata. Maximizing generality 
enables the problem solver to achieve many goals 
which differ in insignificant ways from the goals 
successfully achieved in an example. ESA maxim- 
izes generality by minimizing constraints associ- 
ated with examples: dropping all irrelevant 
details due to idiosyncracies of the example while 
retaining important facts. 

Essential -Inter-schema constraints con- 
nect component schemata together into a 
complex schema. Technically, these are 
the assertions which support the goal 
achievement by identifying parameters of 
instances of schematic forms with 
instances of prototypes. 

For example, consider the composite schema 
used in the proof of P OR NOT P from the Empty- 
Set. It is obvious that the same composition of 
instances of ElJminationOfAssumption, 

(PROOF GoalPf OF (OR 

Essential Intra-schema constraints 
ensure that each component of a complex 
schema is ncomplete.w Technically, these 
are the immediate supporters of the 
"self" constraints which support the 
achievement of the goal. 

P (NOT P)) ON Emptyset) 
11 

(PROOF Instance0 OF A0 ON GammaO) 

(PROOF PFO OF A0 ON GammaO,BO) 

(PROOF Instance1 5 (OR Al Bl) ON Gammal)' 

. . . 

(PROOF PFO' OF A0 ON GammaO,(NOT BO)) 

(PROOF Insl!tnceP OF (OR A2 B2) ON Gamma;!) 

T .-a 

(PROOF Pfl-OF Al ON Gammal) 

(PROOF InstLice3 OF A3 ON Gamma3,A3) 

A-+% 
(WFF ~3) (SET-OF-WFFS Gamma3) 

(PROOF PF~ OF ~2 0~ ~amma2) 

(PROOF Instance4 OF A4 ON Gamma4,All) 

+ k 

(WFF ~4) (SET-OF-WFFS Gamma4) 

Fig. 5: JeDendencv && Underlsing .P OR NOT P ExamDle 
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Ontional constraints are "forced" or implied by 
essential constraints. They need not be included 
but should be. They don't alter generality but 
improve efficiency. Technically, any assertion 
which has some justification depending purely on 
essential constraints is in this class. 

Extraneous constraints include most instantiation 
bindings and all implications based at least in 
part on extraneous constraints. Technically these 
are just defined to be the non-essential non- 
optional constraints. 

In the P OR NOT P example, extraneous con- 
straints include the identification of the conclu- 
sion as P OR NOT P and the identification of the 
set of hypotheses as the Empty-Set. In fact, one 
may use an arbitrary set of hypotheses and the 
conclusion does not even have to be a disjunction 
of the form A OR NOT A. "Anything goes" so long as 
the essential constraints (which hold the compo- 
site schema together and which ensure that each 
component is legally instantiated) are not 
violated. 

It turns out that ambiguous constraints allow 
the ESA generalization method sketched in this 
paper to learn more from the P OR NOT P example 
than most people [ 81. This is because most people 
don't realize that the same composite schema 
applied to proving P OR NOT P from Empty-Set can 
also be used to construct proofs: 

OF (A OR B) FROM (Union Gamma {A]) 
OF (A OR B) FROM (Union Gamma {B)) 

OF (A OR B) FROM (Union Gamma {A] {B)) 
Unfortunateiy, our first implementation shares 
this fault: it only learns to invoke the composi- 
tion when a proof of A OR NOT A from Gamma is 
desired. (Where A is an arbitrary WFF and Gamma is 
any SET-OF-WFFS). 

IV RELATION TO PREVIOUS WORK 

This paper continues research on ESA ini- 
tiated by Prof. Gerald DeJong in [4]. This work 
is closely related to the hybrid 
analytical/empirical learning methods of Mitchell 
et al [q], but while Mitchell's methods are res- 
tricted to learning new heuristic conditions 
specifying when existing operators should be 
applied, the generalization method described in 
this paper provides new DrOblem solving operators 
as well as new heuristic conditions. The construc- 
tion of new operators out of combinations of old 
ones makes our system similar to the MACROPS 
learning procedure of STRIPS [IO] but our method 
is more "human oriented" and avoids reconstructing 
solutions during the generalization process. This 
is chiefly possible because we record data depen- 
dencies during problem solving. L71 l Also, 
STRIPS and LEX were self contained and automatic 
but somewhat autistic. They based learning on the 
results of very general (but inefficient) 
automatic problem solving methods whereas our 
emphasis is on apprentice-like systems which learn 
by observing the goal directed actions of effi- 
cient human experts. 

V CONCLUSION 

Explanation-based learning methods promise to 
turn examples of problem solving behavior into 
dramatic improvements in problem solving ability. 
This paper discussed generalization for improving 
schema-based problem solvers. 
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