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Abstract

The QBKG system produces critical analyses of possible
moves for a wide varicty of backgammon positions, using a
hierarchically structured. non-discrete form of knowledge
representation. This report compares discrete and
continuous  representations and  reasoning  systems,
addressing issues of competence, robustness, and
explainability. The QBKG system is described and
demonstrated.

Discrete systems vs Continuous systems

Most work in knowledge representation for artificial intelligence
systems has used some varicty of “discrete” representation and control
structure, from the condition-action rules of production systems [9), to
a varicty of frame-bascd systems [11. 4], to various sorts of semantic
network [10, 7). These systems have in common the property that at
any given time there is an uncquivocal distinction between what
knowledge is relevant and what is not (with rclevance criteria such as
“those productions whose condition portion is satisfied”, “those scripts
that are activated”, or “those nodes with marker 2 set.”) This all-or-
none assumption increascs-the cfficiency of these systems by reducing
the cffcctive size of the knowledge base, and makes construction of the
‘The price
exacted for this simplicity can be high. however, in terms of system
behavior. As discussed below, such systems tend towards anomalous
behavior in certain circumstances, and are typically very sensitive to
noisc. Some more recent work with these representations has centered
on rclaxing the all-or-nonc assumption in various ways, such as

knowledge base simpler by guarantceing modularity.

allowing for partial matches in the condition-part of production rules
[2] and the various spreading-activation thcories in semantic nets [5].

Another reason that discrete systems scem natural stems from the
fact that all systems must cventually make basically all-or-none
dccisions about their actions.
that the discreteness of the ultimate action implics that it will have
discrete justifications, with discrete reasons for the justifications and so

The traditional view scems to assume

on, until the discrete inputs are rcached. A major alternative scheme
was advanced by workers interested in game-playing systems, in the
construction of knowledge-intensive cvaluation functions for games
such as backgammon, where the clement of chance introduces a

1.
Ihis research was sponsored by the Defense: Advanced Rescarch Projects Agency
(DOD), ARPA Order No. 3597, monitored by the Air orce Avionics Laboratory Under
Contract 1°33615-78-C-1551.
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branching factor that makes substantial exhaustive search infeasible.
this  paradigni,  knowledge by appropriate
mathematical combination of observations on the world, and the
control mechanism is the evaluation of the overall function on a
sclection of legal successor states, interpreted as a “gathering of

In iy represeited

evidence” procedure. Discretization is held off uniil the last possible
moment. when the evaluations of the successor states are compared
n is chosen. In this scheme, the

relevance criterion for a knowledge item is fuzzy. with potentially all of
the knowledge base implicated to some degree in cach evaluation. For
a large enough knowledge base. this might suggest that implementation
on a uniprocessor would be slow; however, the structure is well suited
to a parallel implementation.

It should be noted that even the choice of “discrete” versus
“continuous™ representations is not a discrete choice: in fact, there are
varying degrees of continuity possible, from the two-valued
propositional representation (e.g.. “John is an adult” vs “John is not an
adult™), 1o a finer grain representation (“John is in the 18 to 34 group”),
to an essentially continuous representation (“John is 26.087 years old”).
In many cases, the two-valucd approach scems completely adequate
(“John is a male™), and it scems casy to ignore the odd boundary cases
that occasionally crop up. Unfortunately, in many areas of practical
interest there is a wide “gray arca” between the extremes (e.g., for age,
duration, size, shape, color, beliefs, desires), and two-state (or r-state,
for small® n) systems tend to manifest undesirable behavior near the
boundaries between the states. In socicty, for example, discretization
leads to surprising behaviors such as pretending to be “over 18", or
driving from Massachusetts to New Hampshire to buy liquor. Berliner
has shown [3] that Samuecl’s use of non-lincarity in an attempt to
improve his checkers program probably foundered on this problem.

"The important point is that too large a grain size for an observation
can have a disastrous cffect on system behavior. The extra information
in a fine-grained obscrvation can always be discarded higher in the
knowledge structure if it is not nceded, such as when the digital watch
tells us it is “4:56:34” and we think “five o’clock.” In other
circumstances, such as timing an cgg, we would maintain a finer grain.
1t is clear that the needed grain size varics depending on the task at

2“small" here implying that large numbers of usefully distinguishablc obscrvations are
being “bucketed” together.



hand. In some circumstances, the simple two-state assumption is
adequate, but in general, no a priori grain size assumption can be
made.

For this reason, discrete systems tend to be fragile in the face of
noisy or erroneous inputs. Simply put, in a two-valued system, if you
arc wrong, you are very wrong. In a discrete medical diagnosis system
using production rules, for example, an crroneous result on a test could
prevent the system from ever making an accurate diagnosis, because
the knowledge relating to the actual discase is not used, due to the
non-satisfaction of the condition portions of the rclevant productions.
This could lead to an inaccurate diagnosis (or no diagnosis at all)
despite a preponderance of evidence, excepting one test, pointing to
the actual malady.

Shifting to a more continuous represcntation can alleviate both of
these problems. The boundary problem is handled by removing the
hard boundarics and replacing them with non-lincar functions which
provide context-sensitivity (as in the way that scores on 1Q tests are
divided by the subject’s age, as opposed to, say, interpreting the raw
scores on different scales depending on whether the subject is over or
under 10 years old). The fragility problem is handled in two ways: on
the one hand. input error or uncertainty is not magnified by the
“bucketing” process, and on the other hand, the “gathering of
evidence” control structure ensures that the most reasonable
hypothesis bascd on all available data will not be missed due to a small
miscue.

One strong advantage of some discrete systems is that they are very
well suited to the task of explaining what they are doing, a task at
which humans are frequently quite adept. Given a subgoal structure, it
is very simple to explain why a particular fact is nceded (to prove the
next higher goal in the structure) and khow a particular fact is to be
cstablished (by proving all needed subgoals immediatcly below.) [12, 6]
Given only a continuous cvaluation function, it is not immediately
clear how to explain why one evaluation is better than another or what
the significance of a particular observation is in the overall scheme of
evaluation.

The QBKG system is an cxample of a continuous knowledge
represcntation system that plays backgammon and provides a
mechanism for explaining some of what it does. 1t is derived from the
BKG system, which demonstrated cxpert-level abilitics in human
competition and introduced SNAC [3], which forms the basis of the
method used for structuring knowledge in QBKG. This paper presents
the high-level issucs addressed by the system and describes the
fundamental mechanisms used. For a more extensive treatment of the
system, discussion of the limitations of the method, and possible
cxtensions to a learning system, sce [1].

3’lhc MYCIN system [6] dealt with tns problem by generalizing production rules to
function with numy-valued Jogic rather than two-vadued.  This inponiant siep towards
continuous knowledge representation is sometimes overlooked.
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The QBKG system

The explanation mechanism of QBKG must handle two main issues.
First, it must isolate the backgammon knowledge relevant to any
particular query from the (usually large amount of) knowledge that
does not bear on a given situation. The second issuc is to provide some
mechanism for deciding when quantitative changes should be viewed
as qualitative change; in essence, to provide the judgemental ability
that discrete systems cnjoy by virtuc of their all-or-none assumption,
(There was rclatively little cffort expended in the gencration of natural
language output; in the example below, the output has been left “in the
rough” as the system gencrated it. Most “language issues™ have been
ignored.)

QBKG is oriented around answering the question “Why did you
This reduces the
explanation task to one of accounting for the differences between a pair

make that move, as opposed to this move?”
of moves. The cvaluation function is structured in.a hicrarchical
fashion as shown in Figure 1. At the leaves of the tree are primitive
observations (Prim in Figurc 1) constituting the system’s source of
knowledge about the world.
concepts using a variety of mathematical operators - provided by the
system. Related concepts are collected higher in the tree by scaling

The primitives arc combined into

cach concept non-lincarly by multiplying by an application coefficient
{(AQ) [3] and summing the results to produce a new concept. This can
be thought of as a unit conversion operation: the subconcept is
converted into units of the concept, with the application cocfficient
giving the current conversion rate. In the case of 1Q test scores, for
example, units of raw scorc are converted into units of 1Q by
multiplying by ]/min(age,culoﬁ"—valw)f‘ In QBKG, ultimately all
values are converted into units of keuristic value and a single value,
Heur, is available at the top of the tree.

The fundamental assumption of the explanation process is that
important diffcrences between a ‘pair of moves will be reflected by
“large” changes in the values of the highest level concepts that are
related to the differences. Letting Move/ denote the move with the
larger Heur and Move2 the one with the smaller, define 8concept =
value of conceprt for Movel - valuc of concept for Move2. Referring to
Figure 1, this assumption impliecs that if §Blocking is “'small”, then
backgammon knowledge related to blocking is not relevant to this
comparison and should not be mentioned. If only one subconcept of
Heur, say, Tactical, is not small, then all intercsting differences are
with respect to Tactical concepts, and the level of discourse for
comparison can be narrowed to just tactical knowledge.

This is the method by which the relevant backgammon knowledge is
isolated. Beginning at Heur, the system searches down the tree until a
level is reached at which more than one significant difference is found.
As desired, if the two moves arc radically different in their effects, the
commentary will begin at a relatively abstract Ievel (c.g., tactical and

4ll is somewhat sobering that this cutof-valuc is typically 16.
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Figure 1:  Schematic view of portions of the QBK G knowledge base.

positional issucs) and if the two moves are quite similar, the
commentary will focus on the crucial differences at whatever level they
are found.

If the discussion is at a fairly narrow level, it is usually sufficient to
just describe the differences and their magnitudes; at higher levels, this
leads to unsatisfying, “hand waving” commentaries. The level at which
an explanation feels satisfying varies from person to person and topic
to topicS. so we have adopted a simple heuristic. The broad concepts at
the top of the tree are denoted collections (Coll in Figure 1), and the
system is built to automatically “look inside™ of any collections that are
mentioned; in ecffect, supplying for free the question “Why is there a
difference in that collection?”

The above discussion is predicated upon having the ability to
recognize “large™ or “significant” differences in the values of concepts.
In a two-valued system, any difference is a large onc (on the order of
True versus False), and the process of recognizing significant
differences is done outside of the system, during the gencration of
discrete primitive observations of a continuous world. Unfortunately,
it is impossible to determine what should be considered significant
without considering the context within which the judgement is to be
made. A difference of ten feet, for example, is much larger in the
context of “Distance I am from the ground” than in the context of
“Distance 1 am from the moon.” A context provides a means of
classifying differences into fuzzy classes such as “about the same”,
“somewhat larger”, and so on. The number of classes will vary
depending on personal taste as well as the degree of refinement of the
knowledge base. Our assumption of six classes (“not significantly”,
“slightly”, “somewhat”, "much”, “very much”, and “vastly™) scems to
work quite well.

S . .
As cvidenced by the child whao respends 1o cvery explanation with “Why?"
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In terms of the QBKG structure, the context of a concept is the set
of more general concepts of which it is a part.  Some of the more
primitive concepts, such as MyPipcount, appear in several places in the
knowledge structure and can therefore be judged in several different
contexts. To judge a difference in context. it is necessary to determine
how that difference affects the value at the top of the knowledge
structure. Given the sign and magnitude of a difference which is to be
considered a significant improvement for Heur, this goodness metric
can be propagated down through the wrec to determine how much
better or worse one move is than another with respect to a given
concept in a given position. In Figure 1, for example, if the goodness
metric for Heur is assumed to be + 10, and in a given position TactWgt
equaled 3, then the goodness metric for EdgePrime would be +10/3,
and a SkdgePrime of less than 10/3 would be judged “about the
same”, a SEdgePrime between 10/3 and 2073 would be “somewhat
better”, and so on.

This procedure requires an a priori goodness metric for Heur. In
QBKG, probably the most satistying overall context would be “What is
the expected value of the game?” with a goodness metric of perhaps a
tenth of a point. Such an cvaluation function could be built, and in
fact the system has an independent computation used to approximate‘
the expected value, which is used in making doubling decisions.® The
original BKG evaluation function only nceded to order the possible
moves with respect to a given initial position, and this “relative™ nature
remained through the translation to the QBKG-style evaluation
function. so Heur values resulting from different initial positions are
not directly comparable. With respect to a given position, however,
various heuristics have been devised which empirically give satisfactory
results in the determination of significant differences.

6 - . .
The approximation of the cxpected value is too crude to provide adequate
discrimination between individual moves, however, thus motivating the “two function”
scheme wsed in BKG.



The QBKG system is now able to produce cogent commentary on
about 70% of positions randomly presented to it. Its principal flaws at
this point are idiosyncrasies in the knowledge basc due largely to
historical rcasons. For example, the system is unable to comment on
the relative merits of two moves where one move scparates the
opposing armies {creaiing a non-interfering race to the finish of the
gamc) and the other move does not.

An example of its ability is shown in Figure 2, taken from a set of
problems by Holland [8]. QBKG has chosen 17-24 as its move, and the
user has asked for a comparison with 12-18,17-18. Holland comments
on this position, “The correct play is to move one man from [the 17 to
the 24 point], hitting Black’s blot. You must try to prevent Black from
cstablishing [the 24 point]. If you were to make [the 18 point] in lieu of
hitting, Black would have 11 chances out of 36 to roll a 1, giving him a
position from which he will still be able to win the game.” (p. 66,
Figure 3 shows QBKG's

e S SNOwW AT §

paraphrased into QRBKG’s notation.)
commentary on this choice. Part (1) is some genceral comments about
the situation, based on PipDifference and the independent expected
valuc computation. Part (2) is QBKG's opinion on the worth of the
two moves, based on §Heur and some knowledge about the range of
possible Heurs in this position. Part (3) is the result of the focusing
mechanism discussed above and shows the extreme importance of
hitting the lone Black man. The crucial issue of stopping Black from
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Figure 2:  Sample position, White to play 6,1

(1)In the given position, White is far ahead in
the race, and has a winning advantage, with
substantial gammon chances.

(2)The actual move, 17-23,23-24(Move 1), is much
better than the suggested move,
12-18,17-18(Move 2).

(3)There is nothing to recommend Move 2.The
advantages of Move 1 are:

o vastly better chances of keeping Black
from making an advanced point [1].
o very much better attack by White [2].

Figure 3: QBKG’s commentary on two moves in Figure 2.
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making an advanced point (AdvPoint in Figure 1) is discovered and
reported, while irrclevant differences between the moves, such as the
addcd risk that White may be hit (11 chances for Move 1 vs 1 for Move
2), are ignored. The bracketed numbers in part (3) are reference
numbers by which the user may request further commentary on the
specificd topics. The system responds to such requests by recursively
entering the focusing system using the selected topic as the root of the
search, in the same manner as it handles topics which are denoted

collections.

Conclusions

We view discretization as a simplifying assumption that becomes less
and less workable as Al systems begin to tackle rcal-world tasks, with
the accompanying problems of noise, uncertainty, and shifting notions
of what is truc and what is reclevant. Using a finc-grained
representation, hicrarchical knowledge structuring and the context-
sensitivity provided by application cocfficients, knowicdge-intensive
cvaluation functions of the form usced in QBKG provide a means of

serete view of
ey

avoiding the diflicultics inwodu icw of

icultics uced by an cxcessivel

v i
excessively disere
the world, while still providing the benefits of explainability and
uniformity of representation which are demonstrated advantages for an

artificial intelligence system.
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