
This paper presents the results of research done on the 
representation of control knowledge in rule-based expert 
systems.’ It discusses the problems of representing co&o1 
knowledge implicitly in object-level inference rules and presents 
specific examples from a MYCIN-like consultation system 
called PUFF. As an alternative, the explicit representation of 
conerol knowledge in sloes of a frame-like data structure is 
demonstrated in the CENTAUR system. Explicit 
representation of control knowledge has significant advantages 
both for the acquisition and modification of domain knowledge 
and for explanations of how knowledge is used in the expert 
system. 

REPRESENTATION OF CONTROL KNOWLEDGE 
IN EXPERT SYSTEMS 

Janice S. Aikins 

Computer Science Department 
Stanford University 

Stanford, California 94305 

ABSTRACT 

I INTRODUCTION 

This paper emphasizes the importance of representing 
domain-specific control knowledge explicitly and separately 
from other forms of domain knowledge in expert systems. The 
particular focus of research on this topic has been MYCIN-like 
consultaeion systems [S] which represent their domain 
knowledge in the form of condition-action or production rules. 
Examples in this paper are taken from the PUFF system [43 
which performs consultations in the domain of pulmonary 
(lung) physiology. 

The CENTAUR system was created in response to 
several knowledge representation and control structure problems 
in the rule-based systems, among which were the problems 
caused by ehe implicit representation of control knowledge. 
CENTAUR provides a framework for performing tasks using 
an hypothesize and match approach [5] to problem solving. 
This approach focuses the search for new information around 
recognized patterns of knowledge in the domain, a strategy that 
was not represented in the rule-based systems. Knowledge in 
CENTAUR is represented in the form of frame-like structures, 
called prototypes, which represent the expected patterns of 
knowledge, and in production rules, which serve as a stylized 
form of procedural attachment and are used to infer values or 
“fill in” slots in the prototype. This knowledge of prototypical 
situations is used for control of the consultation, for explanation 
of system performance, and also as a guide for acquiring 
additional knowledge and for modifying the existing knowledge 
base. 

’ This work was supported by the Advanced Research 
Projects Agency under contract MDA 903-77-C-0322. 
Computer facilities were provided by the SUMEX-AIM facility 
at Stanford University under National Institutes of Health 
grant RR-00785-07. The author is sponsored by the Xerox 
Corporation under the direction of the Xerox Palo Alto 
Research Center. 

CENTAUR’s combination of prototypes and rules results 
in a knowledge representation that is expressive enough to 
allow the many kinds of domain knowledge necessary for 
system performance to be explicitly represented. Control 
know/edge for the consultation is represented in slots 
associated with each prototype, separately from the inference 
rules. Rules are associated with prototypes as the explicit 
contexts in which the rules are applied. The slots in the 
prototype specify the function of the attached rules, such as to 
summarize data already given or to refme an interim diagnosis. 
Other details of the CENTAUR system and a full discussion of 
the knowledge representation and control structure problems in 
the rule-based systems can be found in [I]. 

II TME PUFF SYSTEM 

One such rule-based system is the PUFF system which 
was created using a MYCIN-like framework. PUFF’s domain- 
specific knowledge is represented by a set of approximately 60 
production rules. The “IF” part of the productlon states a set of 
conditions (the premise clauses) in which the rule is applicable. 
The action, or “THEN” part of the production, states the 
appropriate conclusions. The goal in PUFF is to interpret a set 
of lung function tests performed on a patient, and to produce a 
diagnosis of pulmonary disease in that patient. Each rule 
clause is a LISP predicate acting on associative (object- 
attribute-value) triples in the data base. In PUFF there is a 
single object, the patient. The attributes (or clinical 
parameters) are the lung function tests and other information 
about the patient. The PUFF control structure is primarily a 
goal-directed, backward chaining of the production rules as it 
attempts to determine a value for a given clinical parameter. 
written. A complete description of this mechanism is given in 
E61. 

III IMPLICIT CONTROL IN THE RULES 

P’roduction rules, in theory, are modular pieces of 
knowledge, each one capturing some “chunk” of domain- 
specific expertise. Indeed, one of the advantages of using 
production rules [3] is that there need be no direct interaction 
of one rule with the others, a characteristic which facilitates 
adding rules to the knowledge base or modifying existing rules. 
In practice, however, there are significant interactions among 
rules. Executing one rule will in turn cause others to be tried 
when the information needed for the first rule is not already 
known. Therefore, the order of the premise clauses of a rule 
affects the order in which other rules are executed. Further, in 
an interactive system such as PUFF, in which the user is asked 
for information that can not be inferred by rules, the order of 
the premise clauses also determines the order in which 
questions are asked. 

121 

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved. 



This means of controlling question order by placing 
premise clauses in a specific order is, in fact, exploited by 
experts who recognize the need for ordering the questions that 
are asked, but have only this implicit and indirect mechanism 
for achieving their goal. In this case, the production rule 
framework itself becomes a programming language where the 
rules have multiple functions; some rules represent independent 
chunks of expertise with premise clauses specified in an 
arbitrary order, while others serve a controlling function with 
premise clauses that cannot be permuted without altering the 
behavior of the system. 

An example of implicit control knowledge is illustrated 
by the PUFF rule in Figure I below. This rule invokes other 
rules in an attempt to determine whether there is Obstructive 
Airways Disease. (Clause One), and if so, to determine the 
subtype (Clause Two) and findings associated with the disease 
(Clause Three). If Clause One were inadvertently placed after 
either Clause Two or Three, the system’s questions of the user 
would probe for more detailed information about Obstructive 
Airways Disease without having confirmed that the disease is 
present. For example, by reordering the clauses in RULEOOP, 
PUFF might begin its consultation by asking about the patient’s 
smoking history, one of the findings associated with 
Obstructive Airways Disease, and a question that would be 
inappropriate in a patient without a smoking-related disease. 
However, this rule contains no explicit indication that the order 
of the clauses is critical. The problem with implicit 
representation of control knowledge becomes apparent in 
working with the knowledge base, either to modify the 
knowledge or to explain its use in the system. 

RULE882 
----B-s 

If: 1) 

2) 

3) 

An attempt has been made to deduce the 
degree of obstructive airways disease 
of the patient, 
An attempt has been made to deduce the 
subtype of obstructive airways disease, 
and 
An attempt has been made to deduce the 
findings about the diagnosis of 
obstructive airways disease 

Then : It is definite (1.8) that there is an 
interpretation of potential obstructive 
airways disease 

FIGURE 1. PUFF Rule--Implicit Control 

Modifying rules is a normal part of system development. 
Clauses often must be added to or removed from rules in 
response to perceived errors or omissions in the performance of 
the system. However, removing or modifying the clauses of a 
controlling rule can alter the system’s behavior in unexpected 
ways, since the implicit control knowledge also will be altered. 
Therefore, modifications can be safely done only by persons 
intimately familiar with the knowledge base. This factor not 
only limits the set of people who can make modifications, and 
of course precludes the success of automatic knowledge 
acquisition systems in which each rule is considered 
individually, but it also limits the size of the knowledge base, as 
even the best of knowledge engineers can retain familiarity with 
only a limited number of rules at a time. 

A system’s explanations of its own performance also 
suffer when information critical to performance is not 
represented explicitly. The rule-based systems studied generate 
explanations of why questions are being asked using direct 
translations of those rules which were being used when the 
question was asked. (See [2] for details.) There is no distinction 
made between rules that control a line of reasoning, as opposed 
to rules that infer a piece of information. However, users of the 
system should be able to ask both kinds of questions in order to 
obtain justifications of the system’s reasoning process as well as 
justifications of its inference rules. The uniform representation 
of control and inference knowledge in rule-based systems 
further confuses the user by mixing the two kinds of 
explanations. 

IV CONTROL KNOWLEDGE IN CENTAUR 

Control knowledge about the process of pursuing an 
hypothesis in CENTAUR is represented in slots associated with 
each prototype, separate from the inference knowledge which 
will actually confirm or deny the hypothesis represented as 
production rules. Each slot specifies one or more LISP clauses, 
or control tasks, that are executed at specific points during the 
consultation as defined by a top-level prototype representing 
the “typical” consultation (the CONSULTATlON Prototype). 

For the pulmonary function domain, prototypes 
correspond to specific pulmonary diseases. During a 
CENTAUR consultation, initial case data suggest one or more 
disease prototypes as likely matches. Control knowledge in 
these prototypes then guides the consultation by specifying what 
information should be sought next. Expected data values in 
each prototype enable CENTAUR to pinpoint inconsistent or 
erroneous information during the consultation. Final 
conclusions are presented in terms of the prototypical situations 
determined to be present in the case, and any inconsistencies 
are noted. 

Thus the system developer can specify “what to do” in a 
given prototype context as an important part of the knowledge 
about the domain that is distinct from the inferential 
knowledge used in the consultation. These control tasks are 
specified as LISP functions, and the system developer can 
define any new functions as they are required. For example, 
Figure 2 shows CENTAUR’s representation of the control 
knowledge in the PUFF rule shown in Figure I. The control 
knowledge is represented in two of the control slots associated 
with the Obstructive Airways D’isease (OAD) prototype. They 
specify that when OAD is confirmed (the If-Confirmed Slot), 
the next tasks are to deduce a degree and a subtype for OAD, 
and, at a later stage in the consultation (when the prototype 
ACTION slots are executed), to deduce and print findings 
associated with OAD. 

If-Confirmed Slot: 
Deduce the Degree of OAD 

Deduce the Subtype of OAD. 

Action Slot: 
Deduce any Findings associated with OAD 
Print the Findings associated with OAD 

FIGURE 2. OAD Prototype Control Slots 

122 



Prototypes not only represent the domain-specific 
knowledge of a particular application, but also represent 
domain-independent knowledge about the operation of the 
CENTAUR system. At the highest level in CENTAUR, the 
Consultation Prototype lists the various stages of the 
consultation (e.g., entering initial information, suggesting likely 
prototypes, filling in prototypes) in its control slots. The 
advantages of explicit representation of control knowledge thus 
extend to control of the consultation process itself. 

V ADVANTAGES OF THE CENTAUR APPROACH 

The association of control knowledge with individual 
prototypes allows control to be specific to the prototype being 
explored. Thus domain experts can specify a different set of 
control tasks for each prototypical situation. In the pulmonary 
domain, for example, the expert proceeds in a different way if 
he has confirmed OAD rather than some other disease in the 
patient. Further, because this control knowledge is separate 
from the inference rules, the expert does not have to anticipate 
and correct incidental interactions between control and 
inference knowledge. 

Representing the entire consultation process itself as a 
prototype has additional advantages. First, the system 
designer’s conception of the consultation process is clearly 
defined for all system users. Second, representing each stage of 
the consultation as a separate control task allows stages to be 
added or removed from the consultation process. For example, 
the Refinement Stage, which uses additional expertise to 
improve upon an interim conclusion, was omitted during early 
stages of system development for the pulmonary function 
problem. “Filling in” a consultation prototype with user- 
specified options, such as a choice of strategy for choosing the 
current best prototype (for example, confirmation, elimination, 
or fixed-order), results in a control structure that can be 
tailored to the desires of each individual user. 

The organization of knowledge into prototypical 
situations allows the user to more easily identify the affected set 
of knowledge when changes to the knowledge base are desired. 
Points at which specific control knowledge is used during the 
consultation are clearly defined, with the result that it is easier 
to predict the effects of any control modifications that may be 
made. 

Explicit representation of control knowledge also 
facilitates explanations about that knowledge. In addition to 
the HOW and WHY keywords available in MYCIN, a new 
keyword, CONTROL, has been defined so that a user of the 
system can inquire about the control task motivating the 
current line of reasoning. For example, if the user types 
“CONTROL” in response to a system question about the 
patient’s smoking history, the system would respond, The 
current control task Is to determine the findings associated 
with OAD. 

VI SUMMARY 

This paper has discussed the importance of representing 
control knowledge explicitly, particularly as it affects knowledge 
acquisition and explanation in a knowledge-based system. The 
representation of control knowledge as slots in a prototype in 
the CENTAUR system demonstrates one feasible approach. 
Augmenting the rule representation to include rules that 
function exclusively as control rules might be another. The 
critical lesson learned from working with the rule-based systems 
is that the system’s representation structures must be expressive 
enough to represent control knowledge explicitly, so that it will 
not be inaccessible to the system and to the knowledge engineer. 

ACKNOWLEDGMENTS 

Many thanks to Doug Aikins, Avron Barr, Jim Bennett, 
Bruce Buchanan, and Bill Clancey for their helpful advice and 
comments on earlier versions of this paper. 

REFERENCES 

[l] Aikins, J. Prototypes and Production W/es: A 
Knowledge Representation for Computer 
Consultations. (Forthcoming Ph. D. Thesis), Heuristic 
Programming Project, Dept. of Computer Science, 
Stanford University, 1980. 

[Z] Davis R. Applications of Meta Level Knowledge to the 
Construct/on, Maintenance and Use of Large 
Knowledge Bases. STAN-CS-76-552, Stanford 
Universlty, July 1976. 

[3] Davis R., and King, J. An Overview of Production 
Systems. In E. W. Elcock and D. Michie (Eds.), Machine 
lntelllgence 8. New York: Wiley & Sons, 1977. Pp. SOO- 
332. 

[4] Kunz, J., Fallat, R., McClung, D., Osborn, J., Votteri, B., 
Nii, H., Aikins, J., Fagan, L., and Feigenbaum, E. A 
Physiological Rule Based System for lnterpretlng 
Pulmonary Function Test Results. HPP-78-19 
(Working Paper), Heuristic Programming Project, Dept. 
of Computer Science, Stanford University, December 
1978. 

[5] Newell, A. Artificial Intelligence and the Concept of Mind. 
In R. Schank and K. Colby (Eds.), Computer Models of 
Thought and Language. San Francisco: W. H. Freeman 
and Company,l973. Pp. l-60. 

f6j Shortliffe, E. H. MYCIN: A Rule-based Computer 
Program for Advising Physicians Regarding 
Antimicrobial Therapy Selection. Ph. D. dissertation in 
Medical Information Sciences, Stanford University, 
1974. (A Iso, Computer-Based Medical Consultations: 
MYCIN. New York: American-Elsevier, 1976. 

123 


