A Heuristic Variable Grid Solution Method for POMDPs

Ronen I. Brafman

Partially observable Markov decision processes (POMDPs) are an appealing tool for modeling planning problems under uncertainty. They incorporate stochastic action and sensor descriptions and easily capture goal oriented and process oriented tasks. Unfortunately, POMDPs are very difficult to solve. Exact methods cannot handle problems with much more than 10 states, so approximate methods must be used. In this paper, we describe a simple variable-grid solution method which yields good results on relatively large problems with modest computational effort.

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.