Forward Estimation for Game-Tree Search

Weixiong Zhang

It is known that bounds on the minimax values of nodes in a game tree can be used to reduce the computational complexity of minimax search for two-player games. We describe a very simple method to estimate bounds on the minimax values of interior nodes of a game tree, and use the bounds to improve minimax search. The new algorithm, called forward estimation, does not require additional domain knowledge other than a static node evaluation function, and has small constant overhead per node expansion. We also propose a variation of forward estimation, which provides a tradeoff between computational complexity and decision quality. Our experimental results show that forward estimation outperforms alpha-beta pruning on random game trees and the game of Othello.

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.